Final results on $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ from BNL E949

David E. Jaffe

Physics Department

HIGH ENERGY PHYSICS
THE UNIVERSITY OF CHICAGO

BROOKHAVEN NATIONAL LABORATORY
1. What is our quest?
2. How was it done?
3. What are the results?
Our quest

Where does the Standard Model of particle physics break down?

Two ways to look for “new physics”:

Intensity frontier
Precision measurements (muon g-2)

Energy frontier (LHC)

Rare decays ($K^+ \rightarrow \pi^+ \nu \bar{\nu}$)
What is our quest?

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ probes the basic constituents of matter

Heavy quarks decay to lighter quarks via the weak interaction

In the early 1970’s...

All observed flavor-changing decays also change electric charge

Observed (5%)

Not observed ($< 10^{-6}$)

No evidence of flavor-changing neutral currents (FCNC) as predicted by theory of the time.
What is our quest?

\[K^+ \rightarrow \pi^+ \nu \bar{\nu} \] probes the basic constituents of matter

Third generation with \(m_t \gg m_c, m_u \) permits \(K^+ \rightarrow \pi^+ \nu \bar{\nu} \) decay at second order.

FCNC of \(K^+ \rightarrow \pi^+ \nu \bar{\nu} \) in SM

\[
\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) \propto |V_{ts}^* V_{td}|^2
\]

\[
\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (0.85 \pm 0.07) \times 10^{-10}
\]

Strong interaction (QCD) part of \(K^+ \rightarrow \pi^+ \nu \bar{\nu} \) decay is related by isospin to \(K^+ \rightarrow \pi^0 e^+ \nu \) decay.
What is our quest?

Sensitivity to New Physics

Ref: D. Bryman et al., hep-ph/0505171. Assumes MFV.
What is our quest?

Sensitivity to New Physics

Ref: G.Isidori, arXiv:0801.3039, attributed to Frederico Mescia
Experimental challenges of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

The decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ has a relatively weak experimental signature.

1. These is only one observable particle, the π^+, among the three particles in the final state because neutrinos interact too weakly to be observed.

2. The π^+ can be produced with a range of kinematically allowed values.

3. Only about 8 out of 100,000,000,000 K^+ are expected to decay to $\pi^+ \nu \bar{\nu}$.
$K^+ \to \pi^+\nu\bar{\nu}$ can be observed. Previous BNL E787/E949 results.

<table>
<thead>
<tr>
<th>Region</th>
<th>“PNN2”</th>
<th>“PNN1”</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(\pi^+)$ MeV/c</td>
<td>[140,195]</td>
<td>[211,229]</td>
</tr>
<tr>
<td>Stopped K^+</td>
<td>1.7×10^{12}</td>
<td>7.7×10^{12}</td>
</tr>
<tr>
<td>Background events</td>
<td>1.22 ± 0.24</td>
<td>0.45 ± 0.06</td>
</tr>
<tr>
<td>Candidate events</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>$\mathcal{B}(K^+ \to \pi^+\nu\bar{\nu})$</td>
<td>$< 22 \times 10^{-10}$ (90% CL)</td>
<td>$(1.47^{+1.30}_{-0.89}) \times 10^{-10}$</td>
</tr>
</tbody>
</table>

Reference

PRD 70, 037102 (2004)
E787
PRD 77, 052003 (2008)
E787 & E949

Rate vs.

π^+ momentum in K^+ rest frame

![Graph showing rate vs. momentum in K+ rest frame]
How was it done?

E949 experimental method

- **Measure everything possible**
- \(\sim 700 \text{ MeV}/c \ K^+ \) beam
- Stop \(K^+ \) in scint. fiber target
- Wait at least 2 ns for \(K^+ \) decay
- Measure \(\pi^+ \) momentum \(P \) in drift chamber
- Measure \(\pi^+ \) range \(R \) and energy \(E \) in target and range stack (RS)
- Stop \(\pi^+ \) in range stack
- Observe \(\pi^+ \rightarrow \mu^+ \rightarrow e^+ \) in RS
- Veto photons, extra charged tracks
How was it done?

The Secret of Finding Rare Decays - J. Mildenberger (& J. Hart)

A BEAUTIFUL LIKENESS OF PETER. HOW DO YOU DO IT?

SIMPLE! YOU TAKE A BIG ROCK, THEN YOU CHIP AWAY EVERYTHING THAT DOESN’T LOOK LIKE PETER.
E787 and E949 analysis strategy

- A priori identification of background sources.
- Suppress each background with at least two independent cuts.
- It is difficult to simulate background at the 10^{-10} level, so measure background with data by inverting cuts and measuring rejection taking any correlation into account.
- To avoid bias, set cuts using 1/3 of data, then measure backgrounds with remaining 2/3 sample.
- Verify background estimates by loosening cuts and comparing observed and predicted rates.
- “Blind analysis”. Don’t examine signal region until all backgrounds verified.
Backgrounds in high momentum (pnn1) region

Mechanisms for the main backgrounds in the high momentum region

1. Mismeasurement of π^+ kinematics
2. Undetected photons from $\pi^0 \rightarrow \gamma\gamma$

$K^+ \rightarrow \pi^+\pi^0 (K_{\pi2})$

$K^+ \rightarrow \mu^+\nu (K_{\mu2})$

1. Mismeasurement of μ^+ kinematics
2. Misidentification of μ^+ as π^+
Estimation of background rates with data

- Apply cut2 & invert cut1: Select B events
- Invert cut2: Select C+D events
 & apply cut1: Select C events
- Rejection of cut1 is $R = (C+D)/C$
- Background estimate $= B/(R-1)$

If CUT1, CUT2 uncorrelated,

$A/B = C/D$

$A = BC/D$
Example: Estimating $K^+ \rightarrow \pi^+\pi^0$ pnn1 background with data

Left: Kinematically selected $K^+ \rightarrow \pi^+\pi^0$ with photon veto applied. Photon veto: Typically 2-5 ns wide time windows and 0.2 - 3 MeV energy thresholds

Right: Select photons. Phase space cuts in momentum(P), range(R), energy(E)
How was it done?

Backgrounds in the pnn2 region

<table>
<thead>
<tr>
<th>Process</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+ \rightarrow \pi^+ \nu \bar{\nu}$</td>
<td>0.8×10^{-10}</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^0$</td>
<td>$2092000000.0 \times 10^{-10}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^0 \gamma$</td>
<td>$2750000.0 \times 10^{-10}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$</td>
<td>409000.0×10^{-10}</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^+ \nu$</td>
<td>$6344000000.0 \times 10^{-10}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^+ \nu \gamma$</td>
<td>$62000000.0 \times 10^{-10}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^+ \pi^0 \nu$</td>
<td>$332000000.0 \times 10^{-10}$</td>
</tr>
<tr>
<td>CEX</td>
<td>$\sim 460000.0 \times 10^{-10}$</td>
</tr>
<tr>
<td>Scattered π^+ beam</td>
<td>$\sim 250000000.0 \times 10^{-10}$</td>
</tr>
</tbody>
</table>

CEX is mainly $(K^+ n \rightarrow K^0 X) \times (K^0 \rightarrow K^0_L) \times (K^0_L \rightarrow \pi^+ \mu^- \nu)$

Determined from $(K^+ n \rightarrow K^0 X) \times (K^0 \rightarrow K^0_S) \times (K^0_S \rightarrow \pi^+ \pi^-)$ measurements
Main pnn2 background: $K^+ \rightarrow \pi^+\pi^0$ -scatters

The main background below the $K^+ \rightarrow \pi^+\pi^0$ peak is due to $K\pi_2$ decays where the π^+ scatters in the target losing energy simultaneously obscuring the correlation with the π^0 direction.
Suppression of $K\pi_2$-scatter background

- Photon veto of $\pi^0 \rightarrow \gamma\gamma$

 Photon detection in beam region important

- Identification of π^+ scattering in the target

 - kink in the pattern of target fibers
 - π^+ track that does not point back to the K^+ decay point
 - energy deposits inconsistent with an outgoing π^+
 - unexpected energy deposit in the fibers traversed by the K^+

Kinematic suppression not as effective as for pnn1 $K\pi_2$ background.
Photon veto in the beam region

Active Degrader (AD)
14cm diameter, 17cm long,
12 azimuthal segments
6.1 radiation lengths
How was it done?

E949 scintillating fiber target

Typical pattern in target fibers for $K^+ \rightarrow \pi^+ \pi^0$ decay.

Each fiber is $0.5 \times 0.5 \times 300.0$ cm
Identification of π^+ scattering

Kink in pattern of target fibers

Excess energy in kaon fibers ("CCDPUL")
Suppression of $K\pi_2$ scatter background

Black: Photon-tagged sample
Blue: After target cuts (except CCDPUL)
Red: After all target cuts

Black: π^+-scatter-tagged sample
Red: After photon veto cuts

How was it done?

David E. Jaffe (BNL)
Final E949 results
April 20, 2009
Estimation of $K_{\pi 2}$ scattering background

- $K_{\pi 2}$ scattering background is suppressed by PV and target cuts.
- To estimate PV rejection, multiple π^+ scattering samples are prepared by inverting different combinations of target cuts.
- The “normalization” sample is estimated by inverting the PV cut, but the sample is contaminated with $K_{\pi 2}$ scatters in the range stack (RS) and by $K^+ \rightarrow \pi^+\pi^0\gamma$.

After disentangling the processes:

<table>
<thead>
<tr>
<th>Process</th>
<th>Background events</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{\pi 2}$ TG-scatter</td>
<td>$0.619 \pm 0.150^{+0.067}_{-0.100}$</td>
</tr>
<tr>
<td>$K_{\pi 2}$ RS-scatter</td>
<td>$0.030 \pm 0.005 \pm 0.004$</td>
</tr>
<tr>
<td>$K_{\pi 2\gamma}$</td>
<td>$0.076 \pm 0.007 \pm 0.006$</td>
</tr>
</tbody>
</table>
\[\text{K}^+ \rightarrow \pi^+ \pi^- \text{e}^+ \nu \ (K_e4) \] background

\[\text{K}^+ \rightarrow \pi^+ \pi^- \text{e}^+ \nu \] can be a background if the \(\pi^- \) and \(\text{e}^+ \) have very little kinetic energy and evade detection.

Figure: \(\pi^+ \) momentum \((P_{\pi}) \) vs. total kinetic energy of \(\pi^- \) and \(\text{e}^+ \) from simulated \(\text{K}^+ \rightarrow \pi^+ \pi^- \text{e}^+ \nu \) decays.

Signal region is \(140 < P_{\pi} < 199 \) MeV/c
How was it done?

\[K^+ \rightarrow \pi^+\pi^-e^+\nu \] background

Isolate \(K_{e4} \) sample using target pattern recognition, similar to \(K_{\pi2} \) scatter.

Estimate rejection power of target pattern recognition with simulated data supplemented by measured \(\pi^- \) energy deposition spectrum in scintillator.
Charge-exchange (CEX) background

CEX background is mainly due to
\[(K^+ n \rightarrow K^0 X) \times (K^0 \rightarrow K_L^0) \times (K_L^0 \rightarrow \pi^+ \mu^- \nu)\]

Use measured K^0_S events as input to simulation. The delayed coincidence (DC) cut, $t_\pi - t_K > 3$ ns, provides suppression because the K_L^0 decay must decay in the fiducial region (~ 20 cm) of the target. Additional suppression provided by detection of the lepton.
How was it done?

Muon background

- Previous pnn2 analyses in E787 showed that muon background due to $K^+ \rightarrow \mu^+\nu$ $K^+ \rightarrow \mu^+\nu\gamma$ and $K^+ \rightarrow \mu^+\pi^0\nu$ was expected to be very small (0.016 ± 0.011 events).
- In E949 we relaxed the criteria on identification of $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ decay chain for a relative gain in acceptance of 10%.
Total background and sensitivity

<table>
<thead>
<tr>
<th>Process</th>
<th>Bkgd events (E949)</th>
<th>Bkgd events (E787)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{π_2}-scatter</td>
<td>$0.649 \pm 0.150^{+0.067}_{-0.100}$</td>
<td>1.030 ± 0.230</td>
</tr>
<tr>
<td>$K_{\pi_2\gamma}$</td>
<td>$0.076 \pm 0.007 \pm 0.006$</td>
<td>0.033 ± 0.004</td>
</tr>
<tr>
<td>K_{e4}</td>
<td>$0.176 \pm 0.072^{+0.233}_{-0.124}$</td>
<td>0.052 ± 0.041</td>
</tr>
<tr>
<td>CEX</td>
<td>$0.013 \pm 0.013^{+0.010}_{-0.003}$</td>
<td>0.024 ± 0.017</td>
</tr>
<tr>
<td>Muon</td>
<td>0.011 ± 0.011</td>
<td>0.016 ± 0.011</td>
</tr>
<tr>
<td>Beam</td>
<td>0.001 ± 0.001</td>
<td>0.066 ± 0.045</td>
</tr>
<tr>
<td>Total bkgd</td>
<td>$0.93 \pm 0.17^{+0.32}_{-0.24}$</td>
<td>1.22 ± 0.24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E949 pnn2</th>
<th>E787 pnn2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Kaons</td>
<td>1.70×10^{12}</td>
<td>1.73×10^{12}</td>
</tr>
<tr>
<td>Total Acceptance</td>
<td>1.37×10^{-3}</td>
<td>0.84×10^{-3}</td>
</tr>
<tr>
<td>SES</td>
<td>4.3×10^{-10}</td>
<td>6.9×10^{-10}</td>
</tr>
</tbody>
</table>

The branching ratio that corresponds to one event in the absence of background is the Single-Event Sensitivity (SES).

For the E787+E949 pnn1 analysis, $\text{SES} = 0.63 \times 10^{-10}$.
Verification of background estimates

Relax PV and CCDPUL cuts to define 2 distinct regions PV_1 and CCD_1 immediately adjacent to the signal region.
Define a third region PV_2 by further loosening of the PV cut.
Compare the observed (N_{obs}) with the expected number (N_{exp}) of events in each region.

<table>
<thead>
<tr>
<th>Region</th>
<th>N_{exp}</th>
<th>N_{obs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCD_1</td>
<td>$0.79^{+0.46}_{-0.51}$</td>
<td>0</td>
</tr>
<tr>
<td>PV_1</td>
<td>$9.09^{+1.53}_{-1.32}$</td>
<td>3</td>
</tr>
<tr>
<td>PV_2</td>
<td>$32.4^{+12.3}_{-8.1}$</td>
<td>34</td>
</tr>
</tbody>
</table>

The probability to observe ≤ 3 events when $9.09^{+1.53}_{-1.32}$ are expected is 2%. The probability of the observation in regions CCD_1 and PV_1 given the expectation is 5%; the expectation is $[2\%,14\%]$ when the uncertainty in N_{exp} is taken into account.
Division of the signal region

- The background is not uniformly distributed in the signal region.
- Use the remaining rejection power of photon veto, delayed coincidence, $\pi \rightarrow \mu \rightarrow e$ and kinematic cuts to divide the signal region into 9 cells with differing levels of signal acceptance (S_i) and background (B_i).
- Calculate $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ using S_i/B_i of any cells containing events using the likelihood ratio method.
Examine the signal region

<table>
<thead>
<tr>
<th>Bkgd</th>
<th>Events</th>
<th>S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.152</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>0.038</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>0.019</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>0.243</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>0.059</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>0.027</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>0.007</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>0.379</td>
<td>0.20</td>
<td></td>
</tr>
</tbody>
</table>
What are the results?

Examining the signal region

The nine cells

<table>
<thead>
<tr>
<th>Bkgd</th>
<th>Events</th>
<th>S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.152</td>
<td>0</td>
<td>0.84</td>
</tr>
<tr>
<td>0.038</td>
<td>0</td>
<td>0.78</td>
</tr>
<tr>
<td>0.019</td>
<td>0</td>
<td>0.66</td>
</tr>
<tr>
<td>0.005</td>
<td>0</td>
<td>0.57</td>
</tr>
<tr>
<td>0.243</td>
<td>1</td>
<td>0.47</td>
</tr>
<tr>
<td>0.059</td>
<td>0</td>
<td>0.45</td>
</tr>
<tr>
<td>0.027</td>
<td>1</td>
<td>0.42</td>
</tr>
<tr>
<td>0.007</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>0.379</td>
<td>1</td>
<td>0.20</td>
</tr>
</tbody>
</table>

No momentum cut applied. Solid line represents signal region, dashed line shows tightened kinematic cuts.
Measured $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ for this analysis

- $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (7.89^{+9.26}_{-5.10}) \times 10^{-10}$ for the E949 pnn2 analysis
- The probability of all 3 events to be due to background only is 0.037.
- SM expectation: $\mathcal{B} = (0.85 \pm 0.07) \times 10^{-10}$

All cuts applied.
Measured $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ for E949+E787

- $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$
- The probability of all 7 events to be due to background only is 0.001.
- SM expectation: $\mathcal{B} = (0.85 \pm 0.07) \times 10^{-10}$
- Despite the size of the boxes in energy vs. range, the pnn1 analyses are 4.2 times more sensitive than the pnn2 analyses
- PRL 101:191802, 2008; arXiv:0903.0030 sub. to PRD

E787(dashed) and E949(solid) signal regions shown. All cuts applied.
Implications for $\mathcal{B}(K_L \rightarrow \pi^0 \nu \bar{\nu})$

Grossman and Nir (PLB 398 (1997) 163):

$$\frac{\Gamma(K_L \rightarrow \pi^0 \nu \bar{\nu})}{\Gamma(K^+ \rightarrow \pi^+ \nu \bar{\nu})} = r_{IS} \sin^2 \theta$$

where

$r_{IS} = 0.954$, isospin breaking factor

$\theta =$ relative phase between $K - \bar{K}$ mixing amplitude and $s \rightarrow d \nu \bar{\nu}$ decay amplitude

$$\mathcal{B}(K_L \rightarrow \pi^0 \nu \bar{\nu}) < \frac{\tau(K_L)}{\tau(K^+)} \mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})/r_{IS}$$

$$< 14.6 \times 10^{-10} \text{ (90\% CL)}$$

Current experimental limit: $\mathcal{B}(K_L \rightarrow \pi^0 \nu \bar{\nu}) < 670 \times 10^{-10}$ (E391a, PRL 100, 201802 (2008)).
What are the results?

\[K^+ \rightarrow \pi^+ X \text{ interpretation} \]

90% CL limits on \(K^+ \rightarrow \pi^+ X \) where \(X \) is a massive non-interacting particle for \(\tau(X) \geq 100 \text{ ps} \), assuming 100% detection efficiency if \(X \) decays within the outer radius of the barrel photon veto.

Also: \(B(K^+ \rightarrow \pi^+ X) < 5.6 \times 10^{-8} \) (90% CL) for \(M(X) = M(\pi^0) \) from limit on \(B(\pi^0 \rightarrow \nu\bar{\nu}) < 2.7 \times 10^{-7} \) (E949, PRD 72 091102 (2005)).
$K^+ \rightarrow \pi^+ X$ interpretation

- HyperCP observed 3 events consistent with $\Sigma^+ \rightarrow pX$ with $X \rightarrow \mu^+\mu^-$ and $M(X) = 214.3 \pm 0.5$ MeV/c2 (PRL 94, 021801 (2005)).
- $M(X) = 214.3$ MeV/2 corresponds to a recoiling π^+ momentum of 170.1 MeV/c for the two-body $K^+ \rightarrow \pi^+ X$ decay.
- The nearest candidate from E949 & E787 differs by 3.7 standard deviations from 170.1 MeV/c.
- The 90%CL limit from the previous page yields $\mathcal{B}(K^+ \rightarrow \pi^+ X)\mathcal{B}(X \rightarrow \nu\bar{\nu}) < 3 \times 10^{-9}$.
What are the results?

\[K^+ \rightarrow \pi^+ XX \]

Interpretation assuming a scalar or tensor interaction:

\[B_{\text{scalar}} = (9.9^{+8.5}_{-4.2}) \times 10^{-10} \]
\[B_{\text{tensor}} = (4.9^{+3.9}_{-2.4}) \times 10^{-10} \]

Figure:
Top is simulated \(\pi^+ \) energy spectra
Bottom are events passing the trigger
What happens next?

- In an ill-considered decision of the Executive Branch of the US Government, E949 was cancelled in 2002 after receiving only 20% of the approved beam time.
- Experiment NA62 (formerly NA48/3) at CERN was approved in 2007 and is in preparation.
- NA62 proposes to observe $\approx 65 \ K^+ \rightarrow \pi^+ \nu \bar{\nu}$ per year with a background of ≈ 10 events using a 75 GeV/c beam. The use of kaon decay-in-flight to measure $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ has not been attempted before.
- There is a letter of intent for a stopped kaon decay experiment in Japan using the best parts of E949.
- “A few % measurement of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ appears feasible at Fermilab Project X.” - D.Bryman
In 25 years of research with experiments E787 and E949 at the AGS, the search for $K^+ \rightarrow \pi^+ \nu\bar{\nu}$ decays went from a limit on the branching ratio of $< 1.4 \times 10^{-7}$ (90%CL) to a measurement of $(1.73^{+1.15}_{-1.05}) \times 10^{-10}$ that is twice as large as, but still consistent with, the Standard Model expectation of $(0.85 \pm 0.07) \times 10^{-10}$.
This page is blank
Pion range vs energy for triggered events

- $K_{\mu 2}$-peak
- $K_{\pi 2}$-peak
- $\pi\nu\nu(1)$ box
- $\pi\nu\nu(2)$ box
- muon band
- pion band
\(K^+ \to \pi^+\gamma\gamma \) is not a background

- Partial branching fraction for \(140 < P_\pi < 200 \text{ MeV}/c \) is \(\approx 1.1 \times 10^{-7} \).
- Photon veto rejection of \(\pi^0 \to \gamma\gamma \) is \(> 10^6 \).
- Rate of \(K^+ \to \pi^+\gamma\gamma \) background is \(< 1.1 \times 10^{-13} \) without considerations of \(\pi^+ \) acceptance.

How it began

I have good news. Proposal 787, "Study of the Decay K^+ → π^+νν̄", has been approved for the full requested time of 2500 hours. The High Energy Advisory Committee strongly endorsed this proposal, characterizing it as dealing with one of the two most important areas in particle physics today;
E787 and E949 collaborators

117 collaborators, 17 institutes from Canada, China, Japan, Russia and the US.