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The lceCube Neutrino Observatory

* lceCube focuses on neutrinos

with energies above a
few hundred GeV

- 1 km?° of Antarctic ice
as neutrino target and
Cherenkov medium

86 strings of 60 DOMs

« DeepCore provides

Increased effective
volume at 10-100 GeV

 Focus on dark matter
searches, neutrino
oscillations
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DOM, Dissected

Onboard capture of PMT
waveforms

« 300 MS/s for 400 ns with
custom ATWD chip (SCA)

« 40 MS/s for 6.4 psec with
commercial ADC

Absolute timing < 2 ns (RMS)
Dynamic range ~1000 p.e./10 ns

Noise rate ~600 Hz (underlying
Poisson rate 260 Hz)

DOM electronics dead time < 1%

Survival rate: 98.5%







Digrtal Optical
Module Installation

* Melt a hole in the ice with high-
pressure hot water “drill”

* 65 cm diameter, 2.5 km deep

« Maximum lateral drift ~1 m

« Attach 60 DOMs to a kevlar-
reinforced power and
communications cable

* Run FINAL acceptance tests

 Lower into the hole over the
course of about 10 hours

- Wait a few weeks(!) for the hole to
refreeze completely




lceCube DeepCore

scattering
NN |

« A more densely instrumented region
at the bottom center of IceCube

 Eight special strings plus 12
nearest standard strings

- Hamamatsu high Q.E. PMTs

» String spacing ~70 m, DOM
spacing 7 m: ~5x higher effective
photocathode density than
lceCube

* In the clearest ice, below 2100 m

* Aatten = 45-50 m, very low levels of
radioactive impurities

 lceCube provides an active veto
against cosmic ray muon background



DeepCore Physics

- Dark matter searches
* Primarily sensitive to WIMP masses above ~50 GeV/c” due to energy threshold
« Solar WIMP annihilation: Phys. Rev. Lett. 110, 131302 (2013)
- Dwarf galaxies: Phys. Rev. D88, 122001 (2013)
 Galactic Halo: arXiv:1406.6868, submitted to Eur. Phys. J. C

» Direct searches for exotic particles

« E.g. monopoles: arXiv:1402.3460, Eur. Phys. J. C (in press)

- Measurement of atmospheric electron neutrino spectrum
* First measurement above 50 GeV: Phys. Rev. Lett. 110, 151105 (2013)

- Measurement of atmospheric neutrino oscillations
* First IceCube observation: Phys Rev. Lett. 111, 081801 (2013)

 Improved analysis with reduced energy threshold and two-dimensional data fit greatly improves
precision — arXiv:1410:7227, Phys. Rev. D in press
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Neutrino Mixing

- Pontecorvo-Maki-Nakagawa-Sakata matrix describes mixing
between neutrino flavor eigenstates and mass eigenstates

« Analogous to CKM matrix for quarks

Potential CP violation ~ 6,, (sij =sin B; c; = cos Oij)
1 0 0 0 ci12 s12 O
Upmns = | O co3  s23 —s12 ¢12 O
O —so3 c23 O O 1

):(

solar

atmospheric
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Neutrino Flavor Oscillations

* Neutrinos are produced in flavor eigenstates, but propagation
through space depends on the Hamiltonian and thus the mass

« The three mass components of each flavor eigenstate propagate at
different speeds, leading to interference between the flavor components of

each mass eigenstate

- Can calculate the survival probability of each flavor:
Pova = [(Walva ()] P,, ~ 1 —sin” 20 sin” (

1.0

1.27Am2L>

Two neutrino approximation

Probability
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Oscillation Physics with Atmospheric Neutrinos

* Neutrinos available over a wide range of energies and baselines

- Oscillations produce distinctive
pattern in energy-angle space

 Control systematics using
events in “side band” regions
— trade statistics for
constraints on systematics

- Effectively, a range of near
to far beams rather than
near and far detectors

* Need a large detector to
provide sufficient statistics
for this approach to work

Tyce DeYoung April 2, 2015 11



Osclllation Physics with Atmospheric Neutrinos

» Atmospheric vy survival CUCTraft

minimum at ~25 GeV for -
baseline length equal to %
Earth diameter o
~
- Event rates (trigger level,
Evz10 GeV): 10 los
vy ~ 70k / year

* ve ~ 11k / year
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- Analysis efficiencies increasing r;'::,.-r:a,-f? o
. . . 0 pr .-.-'.-.'-" .
from ~1% in first analysis to 1970 —0.8 —0.6 —0.4 —0.2 0.0

~20% in coming studies cos(zenith)
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Atmospheric Oscillations — First Steps

Phys. Rev. Lett. 111, 081801 (2013)

high-energy sample

<10°¢ low-energy sample <107
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Two energy slices instead of 2D energy-angle analysis; minor modifications to standard
TeV event selection and reconstruction algorithms

Statistically significant angle-dependent suppression at low energy, high energy sample
provides constraint on uncertainties in simultaneous fit

- Shaded bands show range of uncorrelated systematic uncertainties; hatched regions
show overall normalization uncertainty



Atmospheric Oscillations — 2" Generation

* Three years with improved
event selection

* Increased from ~700 to
~1,500 events per year

Events

* Energy threshold reduced
below 10 GeV - see most
of first oscillation minimum

* First specialized low-
energy reconstructions,
enabling use of multiple
energy bins in oscillation
energy range

Events
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7
v, EEE v, + vy

BN v, B v, (osc) |

20 40 60 80

100

-1.0 -0.5 0.0 0.5

COS (ezenit h)

1.0



Atmospheric Osclllations —

Events per energy band

)nd Generation

arxXiv:1410.7227
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Systematics
and Priors

* Priors are implemented as
Gaussian weights in global
likelihood

* Fit jointly with parameters of
interest (B3 and Am?atm)

* Non-analytic parameters
treated by bin-wise quadratic
interpolation with Gaussian
weights

* VN Iinteraction uncertainties
subdominant, ~linear above
7 GeV (~97% of sample)

» All posterior values are
consistent with expectations

Parameter Prior width
Atm. y background norm. none
Atm. v, flux norm. none
Atm. ve/vy ratio +20%
Atm. v spectral index +0.04
/K ratio +10%
sin%(2613) +.008
DOM efficiency +10%
Rel. eff. of HQE DOMs +3%
Bulk ice model two models
Hole ice scattering +0.01 cm™
Cross section model GENIE vs. Gazizov
DIS cross section +5%
DIS energy dependence +0.03
ma (QE) +25%/-15%
Ma (resonant) +20%
Hadronic energy scale +5%




Modeling Atmospheric Muon Background

§ Data -- Neutrinosimulation —— Atm. muons (from data) = —— Neutrinos + Atm. muons

Events
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- Computationally infeasible to produce sufficient sample of
simulated muons (~10° rejection efficiency) — even setting aside
accuracy issue

* Instead, invert muon veto — use sample of apparent neutrino events
with 1-2 PEs detected in outer layers of IceCube
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Interaction vs. Flux Uncertainties

Track-like

Cascade-like

Systematic variations/nominal

Systematic variations/nominal
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Atmospheric Oscillations with IceCube

arXiv:1410.7227

- Projection onto (L/E,) 800 —————————
—— Expectation: best fit | I
600l| - - - Expectation: noosc.| SN - IR SR |

for illustration

- Shaded range shows
allowed systematics
with constraints
from current data

- Systematics-limited;
but constraints on
systematics are
statistics-limited

- Second survival
maximum just
below DeepCore’s
energy threshold

Ratio to no osc.

LI'GCO/E

reco

(km/GeV)
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lceCube Muon

Disappearance Measurement

- Contours
determined by
profile likelihood
of Am?3, sin?(B23)

 Other oscillation
parameters fixed
at Fogli et al.
(arXiv:1205.5254)

+ With IceCube,
minimal sensitivity
to hierarchy,
octant

Tyce DeYoung

| | |
= |ceCube 2014 [NH]

| |
- |ceCube 2014 [IH]

68% (dashed) and 90% (solid) CL contours

/CGCLIIbe Prleliminflzrry

|

|

|

0.30 0.35 040 0.45 0.50 0.55 0.0 0.5 0.70 0 1 2 3
sin2(023)

20

September 4, 2014




arXiv:1410:7227, Phys. Rev. D in press
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Coming Attractions

 Current PRD analysis: 1,500 events per year (all flavors)
« O(1%) atmospheric muon background

+ Targeted high quality events, well-reconstructed with simple low-energy algorithm

- Extension of PRD analysis: 5,000 events per year (all flavors)
* Include events with poorer resolution — don’t help map oscillation dip, but provide
additional statistics for constraining systematics
- Parallel analysis: 20,000 neutrinos per year
* New, very computationally intensive maximum-likelihood reconstruction
- Full-sky analysis for better handle on systematics

- Larger atmospheric muon background: ~8% upgoing (misreconstructed), ~35%
downgoing (evaded veto)

Tyce DeYoung April 2, 2015 22
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Beyond IceCube

 With its DeepCore extension, lceCube has interesting results in indirect
dark matter searches, neutrino oscillation measurements

* Primary limitation is energy threshold: second oscillation maximum, hierarchy-
dependent matter effects, low-mass dark matter just out of reach

» A further augmentation of lceCube DeepCore would provide an energy
threshold low enough to enable a broader range of physics, including
determination of the neutrino mass hierarchy

 Follow IceCube design closely: quick to deploy, low technical risk, moderate
cost

- Also provide platform for more precise understanding of the ice
« Improved in situ calibration light sources, and emitter-detector baselines « Ascat

« Would provide a benefit for both high energies and low energy physics

Tyce DeYoung April 2, 2015 24
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PINGU

- Baseline detector consists of 40 additional strings of 60 Digital srecision ieecune nexe
Optical Modules each, deployed inside the DeepCore volume

- Geometry optimization underway — additional DOMs have relatively low incremental
cost — final proposal likely 80-96 DOMs/string

* 20-22 m string spacing (cf. 125 m Top view of the PINGU new candidate detector
for lceCube, 72 m for DeepCore) 100 —

EL elceCube -
5O ....................... ....................... PlNGU ..............

« ~25x higher photocathode density >

- Additional in situ calibration devices L eee® e T
will better control detector systematics o g 9 @9 :. _______________________ ]

(not included in projected performance) i 5 :.5 o ® ‘. ° . i
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* Engineering issues and cost of - e ® '.. o0 ¢ .
i G ¢ o ® ]
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Atmospheric Neutrinos in PINGU

- Broad range of neutrino energies above a threshold of a few GeV
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Signature of the Neutrino Mass Hierarchy

- Matter effects alter oscillation probabillities for neutrinos or

antineutrinos traversing the Earth

« Neutrino oscillation probabilities
affected if hierarchy is normal,
antineutrinos if inverted

- Maximal effects at specific Ey
and baselines (= zenith angles)
due to the Earth’s density profile

« Rates of all flavors are affected

* Note: effect of detector
resolution not shown here

» Distinct signatures observable
in both tracks (v, CC) and
cascades (ve and v: CC, vx NC)
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Signature of the Neutrino Mass Hierarchy

- Matter effects alter oscillation probabillities for neutrinos or
antineutrinos traversing the Earth

« Neutrino oscillation probabilities
affected if hierarchy is normal,
antineutrinos if inverted

Inverted hierarchy
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- Maximal effects at specific Ey
and baselines (= zenith angles)
due to the Earth’s density profile
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« Rates of all flavors are affected
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* Note: effect of detector
resolution not shown here
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» Distinct signatures observable
in both tracks (v, CC) and
cascades (ve and v: CC, vx NC)




Signature of the Neutrino Mass Hierarchy

- Matter effects alter oscillation probabillities for neutrinos or
antineutrinos traversing the Earth

« Neutrino oscillation probabilities
affected if hierarchy is normal,

___Normal-Inverted
antineutrinos if inverted Vu + Vg

N
~

- Maximal effects at specific Ey
and baselines (= zenith angles)
due to the Earth’s density profile
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« Rates of all flavors are affected
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* Note: effect of detector -l- |-8
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Signature of the Neutrino Mass Hierarchy

- Matter effects alter oscillation probabillities for neutrinos or
antineutrinos traversing the Earth

* Neutrino oscillation probabilities Normal-Inverted

affected if hierarchy is normal, — 20
antineutrinos if inverted Vu + Vy (CC) .

- Maximal effects at specific Ey 10
and baselines (= zenith angles) 3
due to the Earth’s density profile = 1°° 3

O .1 | £

- Rates of all flavors are affected > +0 ‘ 100 o

- Note: effect of detector i [ | {058
resolution not shown here 108

- Distinct signatures observable 1
in both tracks (v, CC) and 10° . . - - 2.0
—1.0 -0.8 -0.6 -0.4 -0.2 0.0

cascades (Ve and v CC, vx NC) COS ¥,



Hierarchy Signature

Normal-Inverted Normal-Inverted
Events ID’d as tracks (v CC) . Events ID’d as cascades (ve, NC) 16
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- With full detector response included, distinctive (and quite different) hierarchy-
dependent signatures are still visible in both the track and cascade channels

- Particle ID based on tagging v, CC tracks — 90% purity above ~10 GeV

 Lack of low-energy tracks due to decreasing ability to distinguish track from vertex
cascade at lower energies



Analysis Improvements Underway

* Increased #DOMs/string to match baseline Gen2 High Energy design (marginal cost of DOMs is
relatively small)

* Inclusion of additional detector-related effects on event reconstruction — appears minimal
- Uncertainties in optical properties of South Pole ice (e.g. anisotropic scattering)

* Injecting DOM-by-DOM calibration errors for sensitivity to Cherenkov photons, in addition to possible systematic
errors in energy scale calibration (already included)

 Correcting Monte Carlo error in non-Poissonian noise levels in simulated PINGU DOMs
 Treatment of v-N interaction uncertainties via GENIE instead of ad hoc scaling

« Detailed modeling of atmospheric flux uncertainties (per Barr et al. astro-ph/0611266) rather than
simpler scaling of flux level and spectral index

- Validating treatment of atmospheric muon background

* Incorporating full suite of systematic uncertainties into likelihood-based significance estimates from
ensemble of pseudo-data sets

- Updating priors on new and existing uncertainties
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Neutrino Interaction Uncertainties

 Biggest effects so far:
uncertainties in Bodek-
Yang higher twist
parameters, axial mass
term for hadron
resonance production

* Ad hoc scalings still
Included, and covariance
not accounted for —
likely over-counting...

- Small additional
effect compared to
existing systematics

Tyce DeYoung
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Other Oscillation Parameters

« PINGU not sensitive to 6cp — complementarity with NOvVA, T2K

- Sensitivity to the mass
ordering strongly
dependent on B23 octant

 Worst-case first octant
solution assumed In
performance studies

* Implies considerable
ability to measure octant
(not yet evaluated explicitly)

8

NMH significance [o]

IH true, Multichannel
— 15t Octant
——  2nd Octant

.......................................................

.......................................................

PRELIMINARY

4 6 8 10
PINGU livetime [yrs]

* Precision for 823 and Am?aim being evaluated, appears
comparable to NOVA or T2K 2020 expectations
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Tau Neutrino Appearance

* Energy range of PINGU g
allows uniquely high ©
tau neutrino rates ‘_é

- Measure v; appearance £
as characteristic ;P
distortion of cascade E

angular/energy
distribution

* Interesting test of unitarity
of 3x3 neutrino mixing

* Direct probe of U3

1.5 ; B |
0.5 ;
- et -+-expected |-
L ~ Preliminary = |lltto ]
. measured v_ hofrm=1 ; +26 _
OO T R B R R R
1 2 3 4 5

+ 10% precision on v appearance rate within a year
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lceCube-Gen?2

* Planning underway for
a multipurpose facility
leveraging the experience
and investment in IceCube

- White paper describing
our vision of this
detector at
arXiv:1412.5106

 PINGU will be one
component of
lceCube-Gen?2
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Cost and Schedule

- Primary US funding source for
lceCube-Gen2 would be NSF

- MREFC-scale facility, total cost
comparable to original IceCube

- Many items common to PINGU and

other elements (drill, engineering, etc.)

- Marginal cost of PINGU within larger

lceCube-Gen?2 is $88M, with expected

non-US contributions of $25M

- Gen2 conceptual design document and
PINGU performance update this year

* In a technically limited timeline, PINGU
completion possible by January 2021

or 2022

Tyce DeYoung

April 2, 2015

Cost for PINGU Component

Hardware $48M
Logistics $23M
Contingency $16M
Expected non-US

contributions $25M
Total US Cost $63M

(elements do not sum to total due to rounding)
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Conclusions

- PINGU has a unique place in the world-wide neutrino program

- Measurements at a range of higher energies/longer baselines, with high
statistics

- Opportunity to discover new physics is greatly enhanced by
PINGU’s complementarity with other experiments

« PINGU will be a natural part of the lceCube-Gen2 Observatory
 Closely based on IceCube technology — low technical and cost risk

« PINGU will use the same hardware as high energy extensions of lceCube -
common design gives flexibility to optimize based on progress of the field

* Focus today is on neutrino physics, but also interesting potential in
searches for low mass dark matter and other exotica

Tyce DeYoung April 2, 2015
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