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Top Quarks

e The top quark is the most massive fundamental particle
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Top Quarks

e It is a bare quark.
(Does not hadronize)

Censored

e Maybe it is the probe that finds new physics?
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Making a Top Quark

e The LHC has been colliding
protons at /s = 7,8 TeV

e 5.25 fb~1 recorded at 7 TeV in
2011

e 5.24 fb~! and counting this year
at 8 TeV

® 045~ 165 pb @7 TeV
X 3\)\ Og\
O’tf ~ 240 pb @ 8 TeV Month in Year

e ATLAS has recorded hundreds of thousands of top quarks
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£ ATLAS Online Luminosity
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— 2012 pp V5= 8TeV
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e Top quark measurements are now used for precision studies. Results
mainly on ~ 1-2 fb~!
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Finding a Top Quark

%
.. -
e In the SM top quarks decay - e 9 o:o
overwhelming as t — WThb .q\ ) -
o Gives several handles for identification W+ \ /
e/p/T from W decays X
£, from neutrino
b-jet
e Lots of handles, but each must be 5 ) \W- v
understood with high precision aus" 0—°
1 :o \o p-/ e
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Finding a tt event

o Final states are categorized by the W decay
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o Every final state has been directly measured at ATLAS except 7 — 7
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Cross Section Measurement

e Several new physics processes can contribute to tt production
Heavy Z' decays
t' or T decays
etc.

o Before data we had very pessimistic predictions about the t cross
section measurement

“we expect a measurement of the cross-section...in the combined channel with a relative
uncertainty of 3.1 (stat) £3%° (syst) £252 (lumi)”-@ 10 TeV 200 pb

e Actual luminosity uncertainty ~ 4% not ~ 20%

o Excellent precision
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Results

® Best measurement is the combination of several ATLAS channels

® o5= 177 + 3 (stat.) £8 (syst.) £ 7

15 May 2012

ATLAS Preliminary

iversity of Oreg

(lumi.) pb

Smaller uncertainty than theory
o= 165+11 pb

Data 2011
Channel & Lumi.

Single lepton  0.70 fb™!

. Theory (approx. NNLO)
for m, = 172.5 GeV

—— stat. uncertainty
— total uncertainty
0 =(stat) =(syst) =(umi)

179+ 4= 9= 7pb

©@ CMS Dilepton 07017 e 17326 114" 2pb
o= 165.8 + 2.2 (stat.) £ 10.6 (syst.) Allhadron 16718278+ 6.pb
+78 (|Um|.) pb Combination —— 177+ 35+ 7pb

Can't say anything about new physics
until theory prediction improves

Need to narrow the scope, and investigate
specific processes that could hide inside
the inclusive cross section errors ( <~ 35
pb to avoid 3¢ evidence)

New measurements
1.67 fo”
2.0510"

Ty + JetS

Tpag + lepton

All hadronic
47 ‘b‘

———————— 200+ 19+ 42+ 7 pb

186+ 1320+ 7 pb
168+12 *%+ 6pb

57%

50

o, [pb]

| | | |
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Top Quark Resonances

e Heavy resonances could produce mass peaks
gk — tt - Wide Resonance
Z' — tt - Narrow Resonance
o ATLAS search with 2.05 fb~!
http://arxiv.org/abs/1205.5764

e Search in both the |4jets, and dilepton channels
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|4+jets mass reconstruction

e Use W mass to constrain the p,
of the neutrino

e Mass is formed from the lepton
neutrino and the four leading
jets g

e Tails caused by any ISR/FSR jet 1
ending up as one of the leading F

T T T
ATLAS

_[Ldt:z‘os 1o \s=7TeV

Events / GeV
>
T

Uncertainties |
7' (800 GeV) ]
9 (1300 GeV)

igoEmmoo-.

jets

o Jets are excluded if " |
AR >2.5— 0'015X(mj/Gev) 10544 500 1000 1500 2000 2500 3000
between the jet an any other  mass [GeV]
object

e This removes jets isolated from
the rest of the events activity
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Dilepton tt

e Two neutrinos — mass is
under-constrained

e Use a variable correlated to the

> 102 ET T T T
8 E _[Lm:z.os b'\Ns=7Tev _®
mass S F ATLAS
) ‘g 10
o H; + £, (H; = scalar sum of jet &
;
and Iepton pts)
< 3000 5 ok
3 0 ATLAS Simulation . . E
g 25000 - N F
o r - 107 102
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Results

6% BR(Z'—> tf) [pb]

niversity of Oregon

Exclude between 9.3-0.95 pb for

Z'xBR(t7)
10.1-1.6 pb for gux * BR(tt)

T
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Decays and Quantum Effects

¢ No evidence for anomalous production of top quarks
e Perhaps new physics shows up in the top quark itself

Flavor Changing Neutral Currents
Anomalous couplings
T lepton excesses
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FCNC

Look for the process t — Zg

Highly suppressed by the GIM mechanism

Standard Model BR ~ 10714
Higher in many BSM theories

two-Higgs doublet model
topcolour-assisted technicolur
warped extra dimensions
SUSY with R-parity violation
etc..

BR as high as 2x10~4
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Search

Final state is tt — ZWqgb — lligb
Three lepton final state with SM diboson backgrounds

Look for a top mass peak with /lg

e Tops are reconstructed by minimizing

= (misgs, —me)®  (mis, —me)®  (mige —mw)? | (mige — mz)?
. o2 2, 2
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Results

> \ \ \ A

(O] [ ATLAS e data ]

g 12~ ----tt~ Wbzq signal |

o [|rdat=21f"  Eldwz ]

é 10¢ [ Jitsm S

e No evidence found @ 3D I zjets ]
L 8; dibosons ]

e Limits placed at i ) ok uncertainty |
BR(t — gZ) < 0.93% C 1
6 |

o Getting close but not to - 1
the interesting region yet a- ]

o Expect updates to this o
measurement il W77, 77/ Z -

7 * 74 72

----- AR \ 999

140 160 180 200 220
my, [GeV]
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W Polarization

e BSM physics can lead to
anomalous Wtb
couplings

o Affects W polarization in
top decays

e Measurable through
cosf*

Angle between lepton
and b quark in W rest
frame

E
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W Polarization

Two methods were used to measure the polarization components
from cosf*

Template fits to the data

l do
o dcosf*

— %(1 — coszﬂ*)Fo + g(l — cos@*)2F/_ + g(l + cos@*)zFR

e Measurement of Asymmetries

N(cost* > z) — N(cosf* < z)

AL =
* N(cosO* > z) 4+ N(cost* < z)

z=£(1-23)
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W Polarization- A+

T‘;, 0.5:, ATLAS‘ | single Iept‘on channels,:

\8/ E J'L dt=1.04 10" ® Unfolded data E

e Data is binned in 4 E 0.4l b %% SM expectation |
non-uniform bins to et
count events abovezand 0.3F s ]
below z = £(1 — 23) S ]

e AL is extracted from 0.2 B
unfolded cosf* f ]

o Each bin is corrected for or R
detector effects O e ]
-1 -0.5 0 0.5 1

cos 6*
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W Polarization - Template Fits

" R e
%2000; ATLAS single lepton channels |

11800 I Ldt=1.041b" 8 Daa E

| ---- SM . |

1600: Bkge;é)st fit J

. L [ZUnc. best fit ]

e Template fits preformed 1400 2 1
on raw data 1200 E
1000\~ E

L] F(),FL,FR and C ]
800 -

background extracted g 1

. : 600- £
with Maximum 4000 E
likelihood fit B ]
200 =

C . N N P |

07 05 0 05 1

cos 6*
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Results

I T T T
ATLAS ILdt:1.04fb’1 | R F
o Final measurement is a W NNLO QCD
. . Combination
combination of both e+ Data (F_/F,IF)
R
methods Template (single leptons) e LA
. . Template (dileptons) e e To —a—
e Combined using a best A o
symmetries (single leptons) ~e+ L 3 Al
linear unbiased estimator Asymmetries (dileptons)  -e=  wm: -
(BLU E) Overall combination 23 - e
I ! Ll I
0 0.5 1

W boson helicity fractions
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W Polarization-Limit

o Excellent agreement with

SM

e Set Limits on anomalous

couplings

University of Oregon

Jacob Searcy

g 1 E
T L ATLAS 68% CL ]
o C ]
0.8 95% CL
0.6 J' Ldt=1.04 fbrl allowed regions ]
0.4 -
0.2 -
oF .
0.2 -
[ TopFit V=1,V =0 ]
04 - [N M
-0.4 -0.2 0.2 0.4

Re(g))
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Cross section in the |[4+7 channel

e Reuvisit the cross section in the | + 7

e Why tt with taus?

e Measuring the t — 7 4+ X is a window to new physics
« Directly sensitive to t — H* + b

o Currently the best Tevatron measurement has an uncertainty of 25%
(2.1 fb~1) (DO note 5607-CONF)

e Requires every part of the detector. Also requires almost every object
reconstruction algorithm (u,e,7,b,H7 )

=L,

.
H+ ._:-
O o
® sgses
b
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|47 Analysis Overview

e 2.05fb~1 of 7 TeV data

o Signal extracted from fit and a matrix
method
o Event Pre-selection
Trigger on one u/e and require it be
isolated
Require at least one 7 candidate
At least two additional jets
B+ > 30 GeV
> Er (u/e+Jets+Hr) > 200 GeV
Require at least one jet be b-Tagged
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Whats Left?

Signal tt Background tt
N\l . o°
oT+ .. %° ed °
.l o¥ s ) %
we Qe we Oy -
A lot of 9 \O
p gmRA pmN- T
ST 0—e e —e
e Vowie  oe, N\ow /e
L] L]
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| + 7 Event

Run Number: 182424, Event Number: 2582762
Date: 2011-05-21 20:51:17 CEST Af AT LAS

JA EXPERIMENT
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7 - Candidates

e The main feature distinguishing signal from background is the 7
lepton

o 7 identification is a two step process in ATLAS
Candidates are found (high efficiency and small background rejection)
Final identification is preformed with multi-variate techniques

e Finding a 7 candidate?

Take all jets reconstructed with anti-K; with R value of 0.4

Assign all tracks within a cone of AR < 0.2 of the jet axis and with a
pt > 1 GeV

Keep candidates with 1,2, or 3 tracks.
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Jacob Searcy

e Final 7/jet discrimination (and the final observable for this analysis) is
a boosted-decision tree (BDT) used for 7 identification.

o BDT formed from an input of
Shower Shape Variables

Isolation Variables
Tracking Variables

e Fake 7s from jets make up the
dominant background in this

analysis

e Gluon Jets look different to the
BDT than b and quark jets

e Flavor composition can greatly
affect the BDT shape of fake 7s

University of Oregon

o [nanaa T T T T T T RanRs!
=1 Q
s 01~ 2oty 1prong p_>20 GeV ]
~ [ e 2011dietdata Im L=130pb™ T ]
g 0,08 ATLAS Prliminary B
2 [ ]
[ N ]
2 0.06 - ]
£ ]
ﬁ L
0.041- -
4.,.”‘
0.02— -
G’o’ | | | S
0 01 02 03 04 05 06 07 08 09 1
BDT Score
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Fake Composition

- 2 FXiAs smuaion | ]

o Jet composition can lead o " 1
. “ 01" Wightquan E

to a large systematic I ]
0.05F Bguon E

e Trick: subtract same
sign (SS) events from
opposite sign (OS) ones S.. W

Outgoing quarks have B0ty

S
=1
@
T
lj/j_v\
4
ol

opposite sign of 2 o BT
lepton (OS > SS) £ oot M E
Gluon have no charge ooef- | bauar ]
(0S = S5) oo 87

0.02F-

b quarks come in
pairs (OS = SS)

T T
06 07 08 09 1
BDT]

T T
01 02 03 04 05
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Background Estimation

e Two different methods were used to cross check each other
o Minimum x? fit from templates

e Matrix Method: Makes a cut on the BDT an estimates backgrounds
in this “tight” sample

N/oose — N/oose 4 Nloose

data fake real

tight tight

real €hake = Nfake
loose ake ™ njloose

Nreal Nfake

€real =

tight __ p tight tight
Ndata - Nfake + Nreal

. . . tight
® Solve for background in signal region N

tight €fake loose tight
Nfake - (Ndata * €real — Ndata )
€real — €fake
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7 Fake Rate

o Each method takes their fake rate/template from a different control

sample
Matrix Method Fitting Method
o Derive €fpe from W1 jet e Derive Fake template from 0

events b-jet data
Bt > 30 GeV, Mt > 30 GeV, Signal region except exactly 0
1 7 candidate b-tagged jets
Large number of events, but Lower statistics
kinematically different from tt Kinematically similar tt
€fake Parametrized to account Very small corrections need
for this (estimated from MC)

University of Oregon 32/30 BROOKHIVEN



June 14, 2012 Jacob Searcy

Parametrization of €gye

® Fake taus from W41 jet events are kinematically different from tt

® BDT shape is different, and so is the fake rate
® This can be fixed by parameterizing the fake rate as a function of EM-fraction which
accounts for differences in hadronic activity

ZAR,-<0.4 EEM
EM i€e{EM 0—2} “T,i
fraction =
raction AR<0.4 _pyp

Zje{all} T,j

T
W+ JetMC
02-[imc

ATLAS Simulation

T
W+ JetMC
02-[imc

ATLAS Simulation

!
~HW+1 JetMC
02-[imc

ATLAS Simulation

EM-fraction 0.4-0.8

Arb. Units
Arb. Units

EM-fraction >0.8

EM-fraction 0.0-0.4

Arb. Units
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Matrix Method Results

e Matrix Method preformed separately for 1-prong and 3-prong 7

candidates
1 prong multi prong

@ 600 e e e ) [T T T T T T T T T
5 r ] § 120 b
3 oo MC sig. + MM back. ATLAS ] 3 oo MC sig. + MM back. ATLAS 4
0 O o ou E 0 o f oo ]
0 r ] ¢ 100 7
8‘ a00r —o— MM back. E 8‘ [ o= MM back E
r I:IMC back b 80? I:IMC back |
300 1 L ]
C oo e Jorrennnennd ] L ] ]
B J'Ldtzz.osfb'1 ] oo ILdt:Z.OSfbl ]
e ] - e
$ 1 £ It M T
100~ pa— 200 T n
I — M — =]
00 01 02 03 04 05 06 07 08 09 1 00 01 02 03 04 05 06 07 08 09 1
EM-fraction EM-fraction
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Deriving Fit Template

e 0-b tag region has some real taus that must be subtracted out mainly
from Z — 71
e MC is scaled to observed events in a Z — upu selection

) C ] 1] F 3
s 14001 -4 0b-tag data ATLAS 1 < r+0 b-_tag dgta ATLAS ]
o r — T simulation B o 2000 — T, simulation e
@ 1900 - Derived background J’ Lat=205" ] @ L - Derived background J'Ldt =205f" 1
. [ [ Bkg stat. uncertainty ] ' [ [ Bkg stat. uncertainty ]
& 1000 3 & 15001 .
8001 = '-

[ ] 1 : d 3

4000 ——] F = ]

[ 3 500 B

200- 1 i 1 ]
I I T o

0O 01 02 03 04 05 06 07 08 09 1 00 01 02 03 04 05 06 07 08 09 1

BDT, (1) BDT, (t,)
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Fit Results

o Fit preformed separately for 1-prong and 3-prong 7 candidates

1 prong multi prong
2 C 3 2 L N
§ %00 ¢ >1bagdata ATLAS 8 12001 ariAS 4 >lbtagdata |
w E | w r 7
800 ... Bkg from fit = r _ El - Bkg from fit 1
@ “TF B ILm:z,Osfbl ] gmoo;J’Ldt-z.osm Y =
i 700 [ Bkg stat. uncertainty E o F [ Bkg stat. uncertainty -
O 600)~ — 1, signal from fi E O 8001 — Tysignal fromfit
S00E  yandi=0.5 E 600’ ¥eindf = 0.7 ]
400 — ]
300F E 4001~ 8
200 E 0} ]
100F- = - r :
Lol L rorwrorn ISP rarrars s swwn
% 01 02 03 04 05 06 07 08 09 1 %0102 03 04 05 06 07 08 09 1
BDT, (1) BDT, (1)

e Lepton fake rates estimated with data driven scale factors
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Cross Checks

o Background will have a W-peak in M(7, q), the signal will not.

> F 7 > ]
3 500 ATLAS 4 Data . & F ATLAS 4 Data E
n - n = - —
~ [ . tto 1+ ] ~ r g tt- 1+ 1
g J'Lm=2.05fb1 D_ Tag g F J'Ldt=2.osfb1 D_ Tres
g 4001 Wi big B § so0F M i bkg E
3 F other EW 3 Wb otherEW  J
0 300~ uncertainty o + uncertainty 3
0 T 1 2 30 P =
o I ] o %0 ¢ ]
200~ BT, <07 - g 0z BOT>07 |
r ] 20 E
100:* *: 100 1
0: o Sl S e A ‘ 0: PERACT woww . oo SO TR L

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
m(r, jet) [GeV] m(r, jet) [GeV]
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Cross section

e The background measurements agree
e Combine one prong and multi-prong

o = 186 + 13(stat) £ 20(syst) & 7(lumi.)pb
e Leading Systematics
b-tagging efficiency
T acceptance
Initial and final state radiation (ISR/FSR)
e @ CMS
143 £ 14 (stat.) £ 22 (syst.) £ 3 (lumi.) pbis
o OS-SS trick gains us about 30% in sensitivity over CMS
o Total uncertainty about 13% compared to 9% in the the other
combined dilepton-channels
e Factor two better than the best Tevatron measurement
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Conclusions

ATLAS and the LHC is driving into new territory

Total Cross Section measurement better than theory predictions
Searched for

Resonances
FCNC
Anomalous couplings

Most precise measurement in the / + 7 channel (updated HT Limits
on the way)

No evidence of new physics processes

We've made a lot of progress, but still have a lot to explore!
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