IceCube-DeepCore-PINGU: Atmospheric Neutrino Physics at the South Pole

D. Jason Koskinen
Why Neutrinos?
Standard Model

Quarks

- u
- c
- t
- d
- s
- b

Bosons

- Y
- Z^0
- W
- g
- H^0

Leptons

- e
- \(\nu_e\)
- \(\mu\)
- \(\nu_\mu\)
- \(\tau\)
- \(\nu_\tau\)
Neutrino Mixing Diagram

\[
\begin{pmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle \\
\end{pmatrix}
= \begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3} \\
\end{pmatrix}
\begin{pmatrix}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle \\
\end{pmatrix}
\]
Neutrino Mixing Diagram

Experiment type: Solar & Reactor

Channel: \((\nu_e \rightarrow \nu_\mu)\)

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]
Neutrino Mixing Diagram

Experiment type
Solar & Reactor

Short Baseline (SBL) & Off-Axis

Oscillation

Channel

Solar & Reactor

Short Baseline (SBL) & Off-Axis

\[\nu_e \rightarrow \nu_\mu \]

\[\nu_\mu \rightarrow \nu_e \]
Neutrino Mixing Diagram

Experiment type
- Solar & Reactor
- Short Baseline (SBL) & Off-Axis
- Atmospheric & Long Baseline

Oscillation Channel
- Solar & Reactor: \(\nu_e \rightarrow \nu_\mu \)
- Short Baseline (SBL) & Off-Axis:
 - \(\nu_e \rightarrow \nu_e \)
 - \(\nu_\mu \rightarrow \nu_e \)
- Atmospheric & Long Baseline:
 - \(\nu_\mu \rightarrow \nu_\mu \)
 - \(\nu_\mu \rightarrow \nu_\tau \)

\[
\left(\begin{array}{c}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle \\
\end{array} \right) = \left(\begin{array}{ccc}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3} \\
\end{array} \right) \left(\begin{array}{c}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle \\
\end{array} \right)
\]

\[\Delta m_{12}^2, \Delta m_{23}^2\]
Large Weak Mixing

PMNS - ν Mixing

\[
\left(\begin{array}{c}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle \\
\end{array} \right) = \left(\begin{array}{ccc}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3} \\
\end{array} \right) \left(\begin{array}{c}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle \\
\end{array} \right)
\]
Large Weak Mixing

PMNS - \(\nu \) Mixing

\[
\begin{pmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle
\end{pmatrix}
=
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}
\begin{pmatrix}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle
\end{pmatrix}
\]

\[
\begin{pmatrix}
\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\
\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}}
\end{pmatrix}
\]
Large Weak Mixing

PMNS - ν Mixing

\[
\begin{pmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle
\end{pmatrix}
=
\begin{pmatrix}
\sqrt{2} & \sqrt{1} & 0 \\
\sqrt{3} & \sqrt{3} & \sqrt{1} \\
-\sqrt{1} & \sqrt{1} & \sqrt{2} \\
\sqrt{6} & \sqrt{6} & \sqrt{2} \\
\sqrt{1} & -\sqrt{1} & \sqrt{1} \\
\sqrt{3} & \sqrt{3} & \sqrt{2}
\end{pmatrix}
\begin{pmatrix}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle
\end{pmatrix}
\]
Large Weak Mixing

PMNS - ν Mixing

\[
\begin{pmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle
\end{pmatrix}
= \begin{pmatrix}
\sqrt{2} & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\end{pmatrix}
\begin{pmatrix}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle
\end{pmatrix}
\]
Large Weak Mixing

PMNS - ν Mixing

\[
\begin{pmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle \\
\end{pmatrix}
=
\begin{pmatrix}
\sqrt{\frac{2}{3}} \\
\frac{1}{\sqrt{6}} \\
\frac{-1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} \\
\frac{\sqrt{3}}{2}
\end{pmatrix}
\begin{pmatrix}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle
\end{pmatrix}
\]

Is Tribimaximal a real Symmetry?
Large Weak Mixing

PMNS - ν Mixing

$$\begin{pmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle
\end{pmatrix} = \begin{pmatrix}
\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \\
\frac{1}{\sqrt{6}} & \sqrt{\frac{1}{3}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \sqrt{\frac{1}{3}} & \frac{1}{\sqrt{2}}
\end{pmatrix} \begin{pmatrix}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle
\end{pmatrix}$$

Is Tribimaximal a real Symmetry? Probably not
Large Weak Mixing

PMNS - ν Mixing

\[
\begin{pmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle
\end{pmatrix}
= \begin{pmatrix}
\sqrt{\frac{2}{3}} \\
1 \\
\sqrt{\frac{1}{6}} \\
\end{pmatrix} \begin{pmatrix}
\sqrt{\frac{1}{3}} \\
\sqrt{\frac{1}{2}} \\
\sqrt{\frac{1}{3}} \\
\end{pmatrix} \begin{pmatrix}
\phi \\
\nu_1 \\
\nu_2
\end{pmatrix}
\]

Is Tribimaximal a real Symmetry?

CKM - Quark Mixing

\[
\begin{bmatrix}
|V_{ud}| & |V_{us}| & |V_{ub}| \\
|V_{cd}| & |V_{cs}| & |V_{cb}| \\
|V_{td}| & |V_{ts}| & |V_{tb}|
\end{bmatrix}
= \begin{bmatrix}
0.97428 \pm 0.00015 & 0.2253 \pm 0.0007 & 0.00347^{+0.00016}_{-0.00012} \\
0.2252 \pm 0.0007 & 0.97345^{+0.00015}_{-0.00016} & 0.0410^{+0.0011}_{-0.0007} \\
0.00862^{+0.00026}_{-0.00020} & 0.0403^{+0.0011}_{-0.0007} & 0.999152^{+0.000030}_{-0.000045}
\end{bmatrix}.
\]

Okay, but why so big versus CKM?
Importance of $|U_{\tau 3}|^2$

\[
\begin{bmatrix}
|U_{e3}|^2 \\
|U_{\mu 3}|^2 \sim \frac{1}{2} \\
|U_{\tau 3}|^2
\end{bmatrix}
\]

\[
\Delta m^2_{23} \quad \Delta m^2_{12}
\]

\[
\begin{bmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle
\end{bmatrix}
=
\begin{bmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\tau 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{bmatrix}
\begin{bmatrix}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle
\end{bmatrix}
\]
• $|U_{\tau 3}|^2$ is the last unmeasured PMNS matrix element
Importance of $|U_{\tau 3}|^2$

- $|U_{\tau 3}|^2$ is the last unmeasured PMNS matrix element

- Non-unitarity in the third mass eigenstate would be “New” physics
Importance of $|U_{\tau 3}|^2$

- $|U_{\tau 3}|^2$ is the last unmeasured PMNS matrix element
- Non-unitarity in the third mass eigenstate would be “New” physics
 - Non-Standard Interactions?

\[
\begin{pmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle \\
\end{pmatrix}
= \begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\tau 2} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\
\end{pmatrix}
\begin{pmatrix}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle \\
\end{pmatrix}
\]
Importance of $|U_{\tau 3}|^2$

- $|U_{\tau 3}|^2$ is the last unmeasured PMNS matrix element
- Non-unitarity in the third mass eigenstate would be “New” physics
 - Non-Standard Interactions?
 - ν_1 and ν_2 non-unitary?
Importance of $|U_{\tau 3}|^2$

- $|U_{\tau 3}|^2$ is the last unmeasured PMNS matrix element
- Non-unitarity in the third mass eigenstate would be “New” physics
 - Non-Standard Interactions?
 - ν_1 and ν_2 non-unitary?
 - If unitary, not much room left for sterile neutrinos that couple to active states?

\[
\begin{pmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle
\end{pmatrix}
=
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}
\begin{pmatrix}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle
\end{pmatrix}
\]
Importance of $|U_{\tau 3}|^2$

- $|U_{\tau 3}|^2$ is the last unmeasured PMNS matrix element
- Non-unitarity in the third mass eigenstate would be “New” physics
 - Non-Standard Interactions?
 - ν_1 and ν_2 non-unitary?
 - If unitary, not much room left for sterile neutrinos that couple to active states?

- Directly measured via observation of nutau appearance

$$
\begin{pmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle
\end{pmatrix}
=
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}
\begin{pmatrix}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle
\end{pmatrix}
$$
Neutrino Experimental Landscape
• Reactor neutrino experiments dominate the < 1 GeV non-accelerator region

*Boxes provide sense of scale for physics sensitive regions
*concept from D. Grant
Experimental Landscape

- Reactor neutrino experiments dominate the < 1 GeV non-accelerator region
- Accelerator - Beam and Detector are optimized

*Boxes provide sense of scale for physics sensitive regions
*concept from D. Grant
• Reactor neutrino experiments dominate the < 1 GeV non-accelerator region
• Accelerator - Beam and Detector are optimized

*Boxes provide sense of scale for physics sensitive regions
*concept from D. Grant
Experimental Landscape

- Reactor neutrino experiments dominate the < 1 GeV non-accelerator region
- Accelerator - Beam and Detector are optimized

*Boxes provide sense of scale for physics sensitive regions
*concept from D. Grant
Experimental Landscape

- Reactor neutrino experiments dominate the < 1 GeV non-accelerator region
- Accelerator - Beam and Detector are optimized

Accelerator based

Non-accelerator based

*Boxes provide sense of scale for physics sensitive regions
*concept from D. Grant
Experimental Landscape

- Reactor neutrino experiments dominate the < 1 GeV non-accelerator region
- Accelerator - Beam and Detector are optimized

Accelerator based

Non-accelerator based

*Boxes provide sense of scale for physics sensitive regions
*concept from D. Grant
Experimental Landscape

- Reactor neutrino experiments dominate the < 1 GeV non-accelerator region
- Accelerator - Beam and Detector are optimized

Neutrino Telescopes (IceCube, ANTARES, etc...)

Gamma Ray Bursts

νμ - Disappearance
Dark Matter
ντ - Appearance

*Boxes provide sense of scale for physics sensitive regions
*concept from D. Grant
- ~1km3 of instrumented ice
- Uses 5160 Digital Optical Modules (DOMs) across 86 strings within the ice to detect Cherenkov radiation
- 160 Cherenkov tank surface array (IceTop)
- Deployed 1.5-2.5km below the surface
- ~1km3 of instrumented ice
- Uses 5160 Digital Optical Modules (DOMs) across 86 strings within the ice to detect Cherenkov radiation
- 160 Cherenkov tank surface array (IceTop)
- Deployed 1.5-2.5km below the surface
Detection Principles

ν_μ
Tracks:
- through-going muons
- km long at high energy

ν_τ, ν_e
Cascades:
- Neutral current for all flavors
- few m at low energy
- Charged current for ν_e and low-E ν_τ

ν_τ
Composites:
- Starting tracks
- high-E (PeV) ν_τ (Double Bangs)
- Good directional and energy resolution
The IceCube Collaboration

36 institutions - 4 continents - ~250 Collaborators
• DeepCore
 • Increased sensitivity at energies < 100-200 GeV
 • 8 special Strings plus 12 closest IceCube-standard Strings
 • Denser DOM and String spacing
 • Deepest and clearest Ice
 • Higher efficiency photon sensors
 • Lower trigger threshold
Neutrino Physics is a Numbers Game
Size Matters

- IceCube gains a dramatic improvement in sensitivity to neutrinos < 100 GeV with DeepCore

![Physical Deep Core Volume ~28 MT](image)

Effective volume for muons from ν_μ interacting in Deep Core

![Graph](image)
Size Matters

- IceCube gains a dramatic improvement in sensitivity to neutrinos < 100 GeV with DeepCore
• IceCube gains a dramatic improvement in sensitivity to neutrinos < 100 GeV with DeepCore

Effective volume for muons from ν_μ interacting in Deep Core

![Physical Deep Core Volume ~28 MT](image)

![Graph showing effective volume vs. energy](image)
Cosmic Ray

\(\mu \)

Trigger Level

\(10^6 : 1 \)

\(\nu_\mu \)
• Trigger level background to signal ratio is 10^6 : 1

• DeepCore uses IceCube as an active veto to reject down-going atmospheric muons and neutrinos

 • Atmospheric muon rejection of $\sim 8 \times 10^3$ with neutrino retention of $\sim 99\%$

• Further rejection employed offline
Neutrino Oscillation Source

- Northern Hemisphere ν_μ oscillating over one earth radii produces $\nu_\mu (\nu_\tau)$ oscillation minimum(maximum) at ~25 GeV
- Covers all possible terrestrial baselines
- "Beam" is free and never turns off

\[\nu_\mu \rightarrow \nu_\mu \]
\[\nu_\tau \rightarrow \nu_\mu \]

• IceCube + DeepCore will collect ~200k isotropic neutrinos at trigger level, tens of thousands have undergone oscillation
• IceCube + DeepCore will collect ~200k isotropic neutrinos at trigger level, tens of thousands have undergone oscillation
• 8 hours of real data

• Preliminary event selection

• Up-Going muon neutrino “candidate”
 • ~15 GeV from track length
• 8 hours of real data
• Preliminary event selection
• Up-Going muon neutrino "candidate"
 • ~15 GeV from track length
Muon Neutrino Disappearance

- 1 year data with 79 total strings (Includes DeepCore)
- Tests oscillation hypothesis using high energy IceCube techniques
- Additional analyses using dedicated DeepCore methods are on-going
 - Higher event rate
 - Better reconstructions
• Instead of fitting $\sin^2 2\theta_{23}$ fit $\sin \theta_{23}$

• The large and already well measured value of θ_{13} increases the chance

• Requires lots of events
 • 10 years DeepCore exposure
Generic Oscillation

Fixed Baseline L

$$P(\nu_\mu \rightarrow \nu_\mu)$$

Δm_{23}^2

$\sin^2(2\theta_{23})$

ν_μ Energy

Energy (GeV)

$\mu \nu \rightarrow \mu \nu$
Tau Neutrino Appearance

- Neutral Current, Charged Current ν_e, and CC ν_τ events produce cascade-like signatures
- Look for statistical excess in cascade events
- DeepCore has been infilled with 2 additional strings
 - Increases ν_τ event rate by $> 15\%$
Atmospheric flux

- Previous IceCube + AMANDA searches have been insensitive to neutrino induced cascades.
- DeepCore cascade candidate event
• DeepCore cascade candidate event
Neutrino Induced Cascades

- First observation of neutrino induced cascades in IceCube
- Higher average energy (~180 GeV) than oscillation region
Challenges
• After online DeepCore filter there is bkg:signal of 1,000+:1
• Background rejection methods work at higher energies (>~100 GeV), away from low NChannel region
• After online DeepCore filter there is bkg:signal of 1,000+:1
• Background rejection methods work at higher energies (>~100 GeV), away from low NChannel region
After online DeepCore filter there is bkg:signal of 1,000+:1

Background rejection methods work at higher energies (> ~100 GeV), away from low NChannel region
Noise Effect

• After online DeepCore filter there is bkg:signal of 1,000+:1
• Background rejection methods work at higher energies (> ~100 GeV), away from low NChannel region
Noise Removal

Before

- Algorithm based on IceCube “TrackEngine” hit clustering trigger
- Hough Transform of angles (θ, ϕ) between hits
 - Noise should be relatively unclustered
 - Physics (neutrinos, muons, etc...) should create clustered hits
Noise Removal

- Algorithm based on IceCube “TrackEngine” hit clustering trigger
- Hough Transform of angles (θ, ϕ) between hits
 - Noise should be relatively unclustered
 - Physics (neutrinos, muons, etc...) should create clustered hits
• IceCube-DeepCore is statistical powerhouse
• IceCube-DeepCore is statistical powerhouse

• Muon disappearance
 • Low energy angular/energy reconstruction(s) are key for a precision measurement
IceCube-DeepCore Wrapup

- IceCube-DeepCore is statistical powerhouse
- Muon disappearance
 - Low energy angular/energy reconstruction(s) are key for a precision measurement
- Tau appearance
 - Deployment of DeepCore has resulted first observation of neutrino induced cascades in IceCube
• IceCube-DeepCore is statistical powerhouse

• Muon disappearance
 • Low energy angular/energy reconstruction(s) are key for a precision measurement

• Tau appearance
 • Deployment of DeepCore has resulted first observation of neutrino induced cascades in IceCube

• Chance to do simultaneous fit to both numu disappearance and nutau appearance
IceCube-DeepCore Wrapup

- IceCube-DeepCore is statistical powerhouse
- Muon disappearance
 - Low energy angular/energy reconstruction(s) are key for a precision measurement
- Tau appearance
 - Deployment of DeepCore has resulted first observation of neutrino induced cascades in IceCube
- Chance to do simultaneous fit to both numu disappearance and nutau appearance
- Moving down in energy from traditional IceCube physics presents new challenges
Where are we going?
• DeepCore has access to the first oscillation minima/maxima

![Oscillation Probabilities](image)

Mena, Mocioiu & Razzaque, *Phys. Rev. D* 78, 093003
• DeepCore has access to the first oscillation minima/maxima
• Neutrino Hierarchy
• DeepCore has access to the first oscillation minima/maxima
• Neutrino Hierarchy
• GeV Dark Matter
Beyond DeepCore
Beyond DeepCore

IceCube
Beyond DeepCore

IceCube

DeepCore
Beyond DeepCore

IceCube

DeepCore
Beyond DeepCore

IceCube DeepCore
Beyond DeepCore

IceCube

DeepCore

PINGU
Idea

• Using existing and familiar technology (hot water drill, HQE PMT DOMs) infill DeepCore with additional Strings

• Drive neutrino energy reach down to few GeV while maintaining multi-megaton scale size

• Precision IceCube Next Generation Upgrade (PINGU)
PINGU: Possible Geometry

- ~20 strings within DeepCore volume w/ short string-string spacing
 - IC-IC: 125m
 - DC-DC: ~80m
 - PINGU-PINGU: <= 26m
- Shorter DOM-DOM spacing
 - IC-IC: 17m
 - DC-DC: 7m
 - PINGU-PINGU: <= 5m
- R & D for future water/ice cerenkov
Increased effective volume for energies below ~10 GeV

Several megatons effective volume at a few GeV
DeepCore Only

- 9.28 GeV Neutrino, 4.9 GeV muon, 4.5 GeV cascade
DeepCore Only

- 9.28 GeV Neutrino, 4.9 GeV muon, 4.5 GeV cascade
- ~20 vs. ~50 Hit Modules
With an infill that achieves ~GeV resolution, the 2nd oscillation minimum becomes accessible.

Improve both track and cascade reconstruction.

Low energy oscillation features

- Matter effects (MSW) change oscillations at lower energy
- Earth density changes also alter the oscillations
- Normal/Inverted Hierarchy

![Graph showing NuMu survival probability with energy on the x-axis and probability on the y-axis. The graph compares normal and inverted hierarchies with sin^2(2\theta_{13}) = 0.1. DeepCore and PINGU are marked on the graph.]
\[(N^H - N^{NH})/(N^{NH})^{1/2} \text{ [PINGU 1 Year]}\]

*reproduction using of technique described in Akhmedov, Razzaque, Smirnov arXiv:1205.7071v3
 hierarchy

\[\frac{N^H - N^{NH}}{(N^{NH})^{1/2}} \text{ [PINGU 1 Year]} \]

reproduction using of technique described in Akhmedov, Razzaque, Smirnov [arXiv:1205.7071v3]

smeared: 3 GeV in energy and 11.25° in angular resolution

\[\frac{N^H - N^{NH}}{(N^{NH})^{1/2}} \text{ [PINGU 1 Year]} \]
Experimental Landscape

Oscillation
IceCube-DeepCore Physics
PINGU
Beyond

Accelerator based

Non-accelerator based

Super-K
KamLAND
Borexino
Double Chooz
Daya Bay
SNO

Neutrino Telescopes (IceCube, ANTARES, etc...)

DeepCore

10 TeV
10 PeV
1 TeV
10 GeV

Neutrino Hierarchy

High Precision ν_μ - Disappearance

Manageable ν_τ - Appearance

GeV Mass
Dark Matter

D. Jason Koskinen - Brookhaven - September, 2012
Thursday, September 6, 12
Experimental Landscape

- Oscillation
- IceCube-DeepCore Physics
- PINGU
- Beyond

Non-accelerator based

- Borexino
- KamLAND
- Double Chooz
- Daya Bay
- SNO

DeepCore

PINGU

Accelerator based

- Neutrino Telescopes (IceCube, ANTARES, etc...)

- GeV Mass Dark Matter
- Manageable ν_τ - Appearance
- High Precision ν_μ - Disappearance
- Neutrino Hierarchy

D. Jason Koskinen - Brookhaven - September, 2012

Thursday, September 6, 12
PINGU Advantages

- Relatively quick, cost effective, huge and unique
 - 2 season deployment w/ additional ~1.5 year procurement/shipping
 - $O(25-30M)$
- Megaton size at GeV energies
- Samples many angle, many baselines and crosses the earth core

- Enhance on-going DeepCore physics
 - muon disappearance
 - θ_{23} maximal mixing
 - octant of θ_{23}
 - tau appearance

- Gains sensitivity to the rich neutrino oscillation features
 - 2nd oscillation minima/maxima
 - Neutrino hierarchy
PINGU Advantages

- Relatively quick, cost effective, huge and unique
 - 2 season deployment w/ additional ~1.5 year procurement/shipping
 - $O(25-30M)$
 - Megaton size at GeV
 - Samples whole earth core
 - Enhance on-going DeepCore physics
 - muon disappearance
 - θ_{23} maximal mixing
 - octant of θ_{23}
 - tau appearance
 - Gains sensitivity to the rich neutrino oscillation features
 - 2nd oscillation minima/maxima
 - Neutrino hierarchy

"Anything worth doing is worth overdoing"
Really Beyond DeepCore

IceCube
DeepCore
PINGU
Really Beyond DeepCore

IceCube
DeepCore
PINGU
Really Beyond DeepCore

IceCube DeepCore PINGU
Low Energy Large Volume

- South Pole Infrastructure
 - No excavation
 - Deployment is a now a refined process
- Unchanging, low-background ice
- Move from GeV to tens of MeV
 - Cherenkov ring imaging
 - IceCube/DeepCore style single-PMT module is no longer attractive
- Multi-megaton Ice Cherenkov Array (MICA)
Cerenkov Ring Imager

- 120 strings of 125 composite DOMs each
 - Instrumented volume of 250 m height, ~40 m radius
- 1 MegaTon fiducial volume, at depths of 2200-2450 m

Courtesy P. Kooijman
• Extend core-collapse SN search beyond Milky Way

• 5 megaton detector with sensitivity down to 15 MeV

Kistler et. al. arXiv:0810.1959
Proton Decay Rings

\[p \rightarrow \pi^0 + e^+ \]

(run 1 event 2) perfect photon counting (all photons \(\lambda \in [265 \text{ nm}; 675 \text{ nm}] \))

IceCube coordinates, ref. depth \((z = 0) \) is 1948.07 m; \(N_{\text{string}} = 40 \); \(d_{\text{DOM},z} = 1 \text{ m} \); \(N_{\text{DOM}} = 7040 \)

S. Bohaichuk & D. Grant, U. of Alberta
Upgrade path towards δ_{CP}?

- Measurement of δ_{CP} in principle possible, but challenging
 - Requires:
 - Electromagnetic shower ID (here: 1% mis-ID)
 - Energy resolution (here: 20% x E)
 - Maybe: volume upgrade (here: ~ factor two)
 - Project X
 - Performance and optimization of PINGU, and possible upgrades (MICA, ...) require further study

“Superbeam FNAL-PINGU?”, W. Winter
MICA Physics

- Extra galactic supernova
- Proton Decay
- Detector for Neutrino Factory, Beta beam or Super Beam
 - Mass Hierarchy, Lepton CP Violation
 - Option for PINGU as well depending on beam characteristics
 - Using PMTs, ~90% of detector cost is electronics
• Atmospheric neutrinos (still) offer rich physics
 • IceCube + DeepCore is a statistical juggernaut, $O(100,000)$ triggered events/year
 • DeepCore + IceCube has observed neutrino induced cascades and numu disappearance

• Proposed extensions
 • PINGU - Down to $O(1)$ GeV improves oscillation searches, lower mass Dark Matter, and neutrino hierarchy resolution
 • MICA - Down to $O(10)$ MeV opens up new physics
Thanks
Neutrino Oscillation

Flavor Eigenstate

\[
\begin{pmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle
\end{pmatrix}
\]

Mass Eigenstate

\[
U_{\text{PMNS}} = \begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}
\]

\[
\begin{pmatrix}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle
\end{pmatrix}
\]

- Neutrino flavor eigenstates are related to mass eigenstates via the PMNS Unitary mixing matrix.
Reactor/Solar

- Optimized for MeV anti-neutrinos undergoing inverse beta decay
- High precision
- Isotropic sources

Borexino | SNO | Daya Bay
Measuring Oscillation Parameters

\[
\left(\begin{array}{c} \nu_e \\ \nu_\mu \\ \nu_\tau \end{array} \right) = \left(\begin{array}{ccc} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{array} \right) \left(\begin{array}{c} \nu_1 \\ \nu_2 \\ \nu_3 \end{array} \right)
\]

underlying nature of weak mixing
\[\begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix} \]

Experimentally measured values
• Experimentally $|U_{\tau 3}|^2$ is measured via an energy dependent excess of tau neutrinos over a long baseline using the weak mixing angles

$$P_{\nu_\mu \rightarrow \nu_\tau} = \sin^2(2\theta_{23}) \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right)$$

$L =$ Length
$E =$ Neutrino Energy
Measuring Oscillation Parameters

\[
\begin{pmatrix}
|v_e\rangle \\
|v_\mu\rangle \\
|v_\tau\rangle
\end{pmatrix}
= \begin{pmatrix}
c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\
-s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\
s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13}
\end{pmatrix}
\begin{pmatrix}
v_1 \\
v_2 \\
v_3
\end{pmatrix}
\]

- Experimentally $|U_{\tau 3}|^2$ is measured via an energy dependent \textbf{excess} of tau neutrinos over a long baseline using the weak mixing angles
 \[
P_{\nu_\mu \rightarrow \nu_\tau} = \sin^2(2\theta_{23}) \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right)
\]
 \(L = \text{Length}\)
 \(E = \text{Neutrino Energy}\)

- $|U_{\mu 3}|^2$ is measured via an energy dependent \textbf{deficit} of muon neutrino events over a long baseline
 \[
P_{\nu_\mu \rightarrow \nu_\mu} = 1 - \sin^2(2\theta_{23}) \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right)
\]
Generic Oscillation

Fixed Baseline L

\[P(\nu_\mu \rightarrow \nu_\mu) \]

\[\nu_\mu \text{ Energy} \]
Generic Oscillation

P(ν_μ → ν_μ)

ν_μ Energy

sin^2(2θ_{23})

Fixed Baseline L
Fixed Baseline L

\[P(\nu_\mu \rightarrow \nu_\mu) \]

\[\sin^2(2\theta_{23}) \]

\[\Delta m_{23}^2 \]

\[\nu_\mu \text{ Energy} \]

\[\nu_\text{Energy} \]
• Accelerators use variable energy neutrino beam to select region of interest
• Place Far Detector km away from beam
• Event timing and direction provide excellent background rejection
Neutrino Mixing Diagram

\[
\begin{pmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle \\
\end{pmatrix}
=
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3} \\
\end{pmatrix}
\begin{pmatrix}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle \\
\end{pmatrix}
\]

\[\Delta m^2 \]

\[\Delta m^2_{23} \quad \Delta m^2_{12} \]
Neutrino Mixing Diagram

Experiment type	Oscillation
Solar & Reactor | Channel |

\(\nu_e \rightarrow \nu_\mu \)
Neutrino Mixing Diagram

Experiment type
- Solar & Reactor
- Off-Axis & SBL

Oscillation Channel
- \(\nu_e \rightarrow \nu_\mu \)
- \(\nu_\mu \rightarrow \nu_e \)

\[
\begin{pmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle \\
|\nu_\tau\rangle \\
\end{pmatrix}
=
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3} \\
\end{pmatrix}
\begin{pmatrix}
|\nu_1\rangle \\
|\nu_2\rangle \\
|\nu_3\rangle \\
\end{pmatrix}
\]

Off-Axis Accelerator & Short Baseline
- Daya Bay

\[|U_{e3}|^2 \quad |U_{\tau3}|^2 \quad |U_{\mu3}|^2 \]

\[\Delta m_{23}^2 \quad \Delta m_{12}^2 \]
Neutrino Mixing Diagram

Experiment type

<table>
<thead>
<tr>
<th>Solar & Reactor</th>
<th>Off-Axis & SBL</th>
<th>Atmospheric & LBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillation Channel</td>
<td>$(\nu_e \rightarrow \nu_\mu)$</td>
<td>$(\nu_e \rightarrow \nu_\mu)$, $(\nu_\mu \rightarrow \nu_e)$</td>
</tr>
</tbody>
</table>

Off-Axis Accelerator & Short Baseline

Atmospheric & Long Baseline

Solar/Reactor

Oscillation

Channel

Experiment type

Solar & Reactor

Off-Axis & SBL

Atmospheric & LBL

ν_1 | ν_2 | ν_3

ν_e | ν_μ | ν_τ

U_{e1} | U_{e2} | U_{e3}

$U_{\mu1}$ | $U_{\mu2}$ | $U_{\mu3}$

$U_{\tau1}$ | $U_{\tau2}$ | $U_{\tau3}$

Δm^2_{23}

Δm^2_{12}

ν^e_3

ν^τ_3

ν^μ_3

ν^τ_3
New World - New Physics

- Oscillation
- IceCube-DeepCore Physics
- PINGU
- Beyond

$\sigma/E (cm^2/GeV)$

- GENIE ν_μ CC
- ANIS ν_μ CC (CTEQ5)
- CSS ν_μ CC

1×10^{-39}

- O16/16
- H1

$log_{10}(E_\nu GeV)$

- Thursday, September 6, 12
Why Water?

* R. Svoboda, Fundamental Physics at the Intensity Frontier

IMB 22 ktons
Super-Kamiokande

LBNE 200 ktons

Hyper-K, MEMPHYS 440-540 ktons
Why Not Ice?

Many, Many, 10,000s of ktons

Why Water?

- IMB
- Super-Kamiokande
- LBNE
- Hyper-K, MEMPHYS

DeepCore

R. Svoboda, Fundamental Physics at the Intensity Frontier
• 1 year data with 79 total strings (Includes DeepCore)
• Monte Carlo signal only

Preliminary

- Unoscillated
- Oscillated

No Reconstruction

\[\theta_{23} = \pi/4 \]
\[\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV} \]
\[\cos(\text{zenith}) < -0.6 \]
Vetoes

- Online DeepCore veto gets rid of ~100x background CR muons. Still 1,000:1 - Bkg:Signal
- TimeVeto - 70% BKG rejection at ~5% signal loss
- ConeCut - 80% BKG rejection at ~5% signal loss
Vetoes

- Online DeepCore veto gets rid of $\sim 100x$ background CR muons
- TimeVeto - 70% BKG rejection at $\sim 5\%$ signal loss
- ConeCut - 80% BKG rejection at $\sim 5\%$ signal loss

![Graph showing efficiency vs. DCog_t - ICog_t](image-url)
• With an infill that achieves ~GeV resolution, the 2nd oscillation minimum becomes accessible

• Improve Cascade reconstruction

• Tau appearance

Figure 12: The precision measurements of CP phase δ_{CP} and $\sin^2 2\theta_{13}$ for three single-baseline neutrino experiments: Beta Beam (BB), Neutrino Factory (NF), and SuperBeam (SB). The contours represent the 1σ, 2σ and 3σ confidence levels (2 d.o.f.). Filled contours represent the PINGU benchmark setups, unfilled contours the reference setups. The crosses mark the best fit value of $\sin^2 2\theta_{13}$ and δ_{CP}. Here we assume the normal (true) hierarchy, the inverted (fit) hierarchy solution can be ruled out by the experiments.
• 3.94 GeV Neutrino, 3.88 GeV muon, 0.29 GeV cascade
Possible Module

- Based on a KM3NeT proposed design

- One meter glass cylinder containing 30 3” PMTs and associated electronics
 - Comparable width to IceCube DOM
 - Effective photocathode area of 265 sq. in. – 3.4x that of standard 10” IceCube PMT, but granular

- Could allow spatial imaging of Cherenkov ring

Courtesy P. Kooijman
Cherenkov ring
from 50 cm μ track

Strings, roughly to
scale for 10 m spacing
Challenges
NoiseEngine

- Noise removal algorithm based on IceCube “TrackEngine” hit clustering trigger

- Hough Transform of angles (θ, ϕ) between hits
 - Noise should be relatively unclustered
 - Physics (neutrinos, muons, etc...) should create clustered hits
• Solar Neutrinos - Look hard enough and you’ll find something Bahcall

• Some of the best neutrino detectors in history did wonderful physics beyond their original design (MACRO, IMB, Super-K, Soudan-2, etc...) why not IceCube?

• OPERA can’t measure tau oscillation parameters. How much wiggle room for unitarity in utau3?