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Outline

● Formalism
● Description of MINOS
● Electron neutrino identification in MINOS
● Background prediction
● FD data distributions
● Results
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Neutrino Mixing
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The mixture changes as neutrinos propagate

,  = flavor states
1,2 = mass states

Natural units
h = c = 1

if the flavor (
e
, 


, 


) eigenstates of the neutrinos are not 

the same as the mass eigenstates
 
...

→ each flavor state is a mixture of the different mass states

 t ≈ L, the distance traveled
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Neutrino Oscillations

Thus a neutrino created in one 
flavor state can be observed 
some time later in a different 

flavor state

P=1−sin22 sin21.27m2 L /E

m2
=m2

2
−m1

2

 =  mixing angle
L =  flight distance
E = neutrino energy

1.27 in units of (GeVc4)/(eV2km)
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The Full Picture
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In the standard model 
of neutrinos, there 
are 3 light neutrinos

3 neutrinos → 2 independent mass squared differences:

m21
2 ,m32

2
mij

2
=mi

2
−m j

2

Mixing can generally be represented by 3 mixing angles 
(

12
, 

23
, 

13
) and one phase () *

(same as standard parameterization of the CKM matrix)

U PMNS=

*If neutrinos are Majorana particles, there are two more phases, but they don't affect neutrino oscillations.



6L. Whitehead, BNL August 11, 2011

Experimental Status

∣matm
2 ∣=2.3×10−3 eV 2

from atmospheric/ accelerator  
(Super-Kamiokande, MINOS)

23≈45o
m sol

2 =8×10−5 eV 2

from solar/reactor 
(Kamland, SNO)

12≈34o

Normal Hierarchy    or    Inverted Hierarchy?

Open questions:

=?
13=?
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Measuring 
13

 with reactor  's
CHOOZ reactor 

neutrino experiment:
 sin22

13
<0.16

disappearance of      from a reactor e
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P ee ≈1−sin22 13sin
21.27matm

2 L/ E

−C13
4 sin2212 sin

21.27 msol
2 L/ E

(CHOOZ)

@ MINOS 
best fit m2

m2

sin22
13 Eur. Phys. J. C27, 331 (2003)
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Measuring 
13

with accelerator  's

Pe≈sin2
213 sin2

23 sin2

matm

2 L

4 E


appearance of      in a      beame 

(Dominant 
term)
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mass hierarchy dependence

Measuring 
13

with accelerator  's

 dependence

P(

 → 

e
)  has higher order terms that depend on 

 and the mass hierarchy
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Measuring 
13

with accelerator  's
MINOS 2010

MINOS was the first experiment with 
sensitivity to 

13
 beyond  the CHOOZ limit!

T2K 2011
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MINOS 
observed 
54 events 
with 49 
expected 
background 
events

T2K 
observed   
6 events 
with 1.5 
expected 
background 
events

Note 
difference 
in  scale!

2

0

CHOOZ 
limit



11L. Whitehead, BNL August 11, 2011

The MINOS Experiment

near 
detector

far 
detector

735 km
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MINOS detectors
alternating layers of steel plates and scintillator strips in a 

~1.3 T toroidal magnetic field

NEARFAR

735 km from the target
5.4 kilotons
8 m tall planes
486 planes (30 m)
700 m underground
Few  interactions/day

1 km from the target
1 kiloton
~4 m tall planes
282 planes (15 m)
100 m underground
Few  interactions/spill
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MINOS detectors

Multi-anode PMT

Extruded
PS scint.
4.1 x 1 cm

WLS fiber

Clear
Fiber cables

2.54 cm Fe

U V planes
+/- 450

UVUV UVUV

Steel thickness: 2.54 cm (~1.4 radiation 
lengths)

Strip width: 4.1cm 
Moliere radius (radius of 90% containment 
of EM showers) ~3.7cm

Strips in adjacent planes are oriented 
orthogonally enabling 3D reconstruction

Each strip is read out by a wavelength 
shifting fiber connected to a multi-anode 
photomultiplier tube

U/V strips 
oriented 
±45o  from 
vertical

beam
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NuMI Beam

● 120 GeV protons hit a carbon target
 

● magnetic horns focus +

 

● + →  + 


● 
e
 contamination (1.3%) from + → e+ 




e

●
 
Target position can be changed to tune the   

  neutrino energy spectrum
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Protons Delivered to Target
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Standard Low Energy Neutrino Beam
Antineutrino beam
High Energy Beam

Only data from our standard low energy beam is used for the result.  (only the green)

Today's result
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Neutrino Interactions at MINOS

Long  track with hadronic 
activity at vertex

 N 
- X



 Charged Current (CC)

The outgoing muon and 
hadronic shower deposit 
energy in the detector.

MC event 
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Neutral Current (NC)

N X

Only the hadronic 
shower deposits 
energy in the detector. short event, 

often diffuse shower

MC event 

Neutrino Interactions at MINOS
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Short event, with 
compact shower profile

e N e - X


e
 Charged Current (CC)

The outgoing electron and 
hadronic shower deposit 
energy in the detector.

Signal for 



 → 

e
 

search!

MC event 

Neutrino Interactions at MINOS
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
e
 appearance in MINOS
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MINOS measures 

 disappearance:

The probability for those
 
 

missing 

's to become 

e
's is at 

most a few percent!
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Searching for 
e
 appearance

1) Determine selection criteria for 
e
 candidate events

2) Use ND data to make a background prediction for the FD

3) Is there an excess of 
e
-like events over the predicted 

background in the FD?
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Projected Sensitivity

CHOOZ 
upper 
limit

2010-style analysis with 
new data
(rate-only with old 
selection variable)

Rate-only with 
new selection 
variable

Shape fit with 
new selection 
variable

Sensitivity = 
90% CL upper limit we 
would set if we observed 
exactly the background 
prediction.

T2K sensitivity ~0.07 
(Neutel11)

Since 2010 result:      
 Phys. Rev. D 82, 051102      
      
● 1.2x1020 POT (17%) 
more data                    
             
● Improved event 
selection variable: 
15% sensitivity gain     
 
● Shape fit:              
12% sensitivity gain
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1) Determine selection criteria for 
e
 candidate events

2) Use ND data to make a background prediction for the FD

3) Is there an excess of 
e
-like events over the predicted 

background in the FD?
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Selecting 
e
-like events

Need to 
discriminate

(NC background) (signal)

Preselection cuts to remove events  
 that are obviously not signal:
● No long tracks
● At least one well-formed shower
● With visible energy 1-8 GeV

After these cuts, 
background consists 
mostly of NC
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Library Event Matching (LEM)

Find best matches 
from a library of MC 
events 

Judge how signal-like 
an event is based on 
those best matches.

Matching is done 
using only strip info 
(location and 
charge)

No dependence on 
high level 
reconstructed 
quantities

New selection variable!
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Matching
Each input event is compared to the 
library events by calculating the 
likelihood that the photoelectrons in 
each event came from the same 
energy deposition.

The library consists of:
● 20 million signal events
● 30 million background (NC) events

Original Event

Good Match

Bad Match
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Info from best matches

How many 
of the best 
matches 
are signal?

How well do 
the charges 
overlap 
between the 
input event 
and the best 
matches?

Average y of the 
e
 CC 

matches?

(y = fraction of energy  in the 
hadronic shower)
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Library Event Matching (LEM)

3 variables + 
reconstructed energy 
used as inputs to a 
neural net

Output of neural net 
is the LEM selection 
variable
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1) Determine selection criteria for 
e
 candidate events

2) Use ND data to make a background prediction for the FD

3) Is there an excess of 
e
-like events over the predicted 

background in the FD?
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Selected Near Detector Data
Apply the 

e
 selection 

criteria to the ND data:
● Red shaded area is the 
systematic uncertainty on 
the MC simulation – 
dominated by uncertainties 
in modeling hadron 
production in  interactions  
                       
● Having a near detector is 
essential – no need to rely 
solely on MC to predict the 
background in the far 
detector!
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Background Extrapolation

Use ND measurement of NC, 

 CC, and beam 

e
 

CC backgrounds to predict FD background.

ND data for 
component  

in bin i

FD prediction 
for component 
in bin i

Far/Near ratio:
Ratio of selected 
events for 
component in 
bin i using MC

F , i=N  , i×R , i
F /N
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Far/Near Ratio

Far/Near
Flux Only

MC Far/Near ratio:
● Flux

● 1/R2 fall-off
● Point source vs line 

source (acceptance, 
decay kinematics, 
focusing...)
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Far/Near Ratio

Error bars are systematic.

MC Far/Near ratio:
● Flux
● Fiducial volume
● energy smearing
● 


 disappearance

● detector effects
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Oscillations affect each background component differently!

Need to know how much of each component in the ND data:
 

● neutral current
 

● charged current 

, 

● charged current 
e
 (from beam contamination)

Near Detector Background

Extract it from the data – don't 
rely on the simulation

Due to the flexibility of our 
beam, we can use near 
detector data taken with 
different beam configurations 
to do this...
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Different Beam Configurations
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Data-Driven Background Separation

Use these 3 data sets to measure the 3 
background components in the standard sample...

Using:
- Total measured rate in each beam configuration
- Relative interaction rates for each background component from 
  the MC simulation

Can fit for the background components in the standard sample
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Data-Driven Background Separation

(60%)

(29%)

(11%)
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 Far Detector Prediction
For 8.2x1020 POT

Signal-enhanced 
region
(LEM>0.7)

=0
m2 = 2.32x10-3 eV2


23

 = /4

sin22
13

 = 0.16

Component  # Events

NC 34

7

6

2

49

30

PRELIMINARY



 CC

beam 
e
 CC 



 CC

Total Bkgd


e
 CC signal

Predicted 
background 
and signal at 
CHOOZ limitNote bkgd 

prediction is 
dependent on 

13
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1) How well we know the composition of the near detector      
    background (small)

2) How well we know the Far/Near ratio
● Calibration -  relative energy calibration, gains, absolute       
  energy calibration, etc
● Relative Far/Near normalization
● Hadronization model - hadrons produced in the neutrino      
  interaction
● etc

Systematic Uncertainty 5.4%
On the background prediction in the signal-
enhanced region (LEM>0.7)

Background Systematics
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1) Determine selection criteria for 
e
 candidate events

2) Use ND data to make a background prediction for the FD

3) Is there an excess of 
e
-like events over the predicted 

background in the FD?
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Sideband: Outside the Signal Region

LEM<0.5
observe 377 events
expect 370 +- 19(stat) (@ 

13
 = 0)

Good test of entire analysis chain - background prediction 
and extrapolation to far detector.
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FD Vertex Distribution
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FD Vertex Distributions
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FD Vertex Distributions
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Event Time / Rate Vs Time

Ratio of FD 
to ND 
preselected 
data
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FD Energy Spectrum
2.7 (stat.) excess in 
the 5-6 GeV region

Possible sources?
● statistical fluctuation
● Hot strips, etc
● misclassified events 
● actual appearance of    
  shower like events        
 
Investigation:
● Event scanning
● Distributions of basic    
  variables
● Considered cosmics,    
  rock neutrons
● is excess nue-like?
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FD Energy Spectrum

Initially planned to fit for


13
 to the LEM shape, 

integrated in energy

Official result is 2D fit in 
both energy and LEM 
shape
● Oscillations are an         
  energy-dependent          
  model: don't want a        
  fluctuation to introduce   
  a false signal
● BUT we don't want to     
  cut data simply               
  because it is                   
  statistically unlikely.Conclusion: excess is likely a 

statistical fluctuation.
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Data in the signal region....
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FD Preselected Data
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FD Preselected Data
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Event Count

In signal-enhanced region
(LEM>0.7):

Expected background (
13

=0):

49.6 +- 2.7 (syst) +- 7.0 (stat)

Observed data:
62
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Example of a Selected Event
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Fitting to Oscillations

15 bin fit
3 LEM bins x 5 energy bins
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Best Fit

Best fit sin22
13

 = 0.041

(Assuming =0, 
23

=/4, 

normal hierarchy)



54L. Whitehead, BNL August 11, 2011

Allowed Regions

Feldman-Cousins contours

Uncertainties in the other 
oscillation parameters are included

Assuming:
=0, 

23
 = /4

normal (inverted) hierarchy

sin2
2130.120.20

sin2
213=0.04 0.08

90% CL

Best Fit

We exclude sin22
13

=0 at 89% CL

arxiv:1108.0015
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Comparison to T2K Results

What does our signal prediction look 
like at T2K's best fit? (sin22

13
=0.11)
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Comparison to T2K Results

Overlay of our allowed region with T2K's
(NOT a combined fit)
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Summary
● MINOS has updated our electron 
neutrino appearance search with 
more data and improved analysis 
techniques: overall 30% gain in 
sensitivity                                           
   
● In the signal region, we observe 62 
events with an expectation of ~50     
                                                   
● Assuming =0, 

23
=/4, normal 

(inverted) hierarchy, we set a 90% 
CL  upper limit of               
sin2(2

13
)<0.12 (0.20)                  

and a best fit value of 
sin2(2

13
)=0.04 (0.08)                  

and exclude sin2(2
13

)=0 @ 89% CL
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