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Coherent NC(0) Scattering: 
Phenomenology

● No transfer of 
quantum numbers

● Small momentum 
transfer

● Nucleus remains in 
the ground state

● Single detectable final 
state reaction product 
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The NuMI Beam

● 120 GeV protons directed to the target

● Protons strike the graphite target; 
produce 's and K's

● Hadrons focused using magnetic horns

● Hadrons decay to 's and 

's
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The NuMI Beam

Beam
Configurations:

 

Low Energy
High Energy

Horns Off
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The MINOS Near Detector
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Coherent NC(0) Scattering 
in MINOS



   

E

 ≈ 1 GeV

E

 ≈ 3 GeV Monte Carlo

Monte Carlo
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Coherent NC(0) Scattering 
in MINOS

● MC event rates     
(2.8x1020 POT)

– Roughly 13k              
coherent NC(0)

– About 1 in 500 events

– 1044 selected events
 

● 0 →  → single           
EM shower

– Most of the energy 
goes to one 

– Two showers overlap 
(density of steel)
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Background Reactions

1,388,311
Fiducial Volume 

Events
 

780,960
Pre-selected Events

 

4,233
Selected Events

4,976,668
Fiducial Volume 

Events
 

930,761
Pre-selected Events

 

454
Selected Events

86,178
Fiducial Volume 

Events
 

68,967
Pre-selected Events

 

469
Selected Events
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Background Reactions

● No visible          
  leptons
● EM shower        
  dominated
● No additional    
  visible particles 

Neutral Current
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Background Reactions

● Long  tracks  
  easily rejected
● Short  tracks  
  can mimic NC  
  topologies

Charged
Current - 


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Background Reactions

● Electron           
  produced         
  EM shower
● QE - like           
  topologies

Charged Current - 
e
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 + e- →  + e-

Scattering Backgrounds
● Neutrino – electron                                 

scattering not                                             
included in the                                              
Monte Carlo

● Theoretical cross                                                
sections are well                                       
constrained

● Special MC samples used to estimate the cos-
vs-E

vis
 distribution

● Subtracted prior to fitting to the data

● Not included in either fit MC or mock data – 
studies still valid
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Event Selection:
Attribute Categories

● Shower Size
 

● Shower Shape
 

● Fits to the energy profiles
 

● Vertex Activity
 

● Energy Dispersion
 

● Track Length and Curvature

Monte Carlo
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Support Vector Machines

● Multivariate classification algorithm 

● Similar to:

– Neural networks

– k-Nearest neighbor

● Train based on MC

– Plot events in attribute space

– Draw borders between regions                                                            
of signal and background

● Input: attributes for an event

● Output: distance to the nearest border

● Output used to select a sample of coherent NC(0) events
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Event Selection:
Signal Selection Parameter



17

Event Selection

BlindedData and MC are 
in agreement in
the unblinded 
region
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Event Selection

Signal purity 
increases with 
increases values 
of the SSP

Signal purity (): 

i=
N i
coh

N i
coh
N i

bkg

For SSP bin i 
Blind regions 
with   > 20%

High SSP/High 
region

NC – largest bkg
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The Selected Sample
Relevant kinematic variables

cos 
shw

E
vis

Events 
selected 
based on 

SSP values
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The Selected Sample

Blinded

cos 
shw

E
vis

MC over-
estimates 

the data in the 
selected sample 

by 20-30%
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cos-vs-E
vis

Signal and Sideband Regions


ij
 > 5%
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The Fitting Procedure

● Fit MC to the data

● Fit the sideband regions

● Fit Parameters – 5

– Determined by                                                            
systematics studies

– Background template                                              
normalizations - 3

– Background template                                                          
shapes (systematics) - 2

● Extrapolate backgrounds into the signal region

● Signal = Data - Backgrounds

● Apply acceptance corrections
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cos-vs-E
vis

Sideband Region: Projections
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MC Sideband Projections
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MC Sideband Projections (Sum)
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Data and MC in the Sidebands
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Sidebands: MC Fit to the Data
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68% Confidence 
Interval

2 = 1.0

Best Fit Value

Fit Parameter 2s
NC/CC-


 DIS

2 
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Fit Parameter 2s

Confidence
Levels

68% - 2 = 2.30
90% - 2 = 4.61
99% - 2 = 9.21

● Colors indicate 2 values
● Star indicates Best Fit values
● Fit parameters are anti-correlated

N
C

/C
C

-

 

R
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o
n
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NC/CC-

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N
C

/C
C
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R
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cos-vs-E
vis

Extrapolate to the Signal Region
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Best-Fit MC Backgrounds:
Signal + Sideband
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(Data) – (Best-Fit MC) = Signal
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Measured Coherent NC(0) 
Event Rate
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Measured Coherent NC(0) 
Event Rate:  ≡ E

vis
(1-cos

shw
)

Selected Coherent 
NC(0) Event Rate: 
  1401±401 (29%)

Error Bars:
● Fit Errors – 2       
  68% Confidence      
  Interval
● Statistical Error on 
  the data and MC

Excess seen at low values of 
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Acceptance Corrected
Coherent NC(0) Event Rate

Total Coherent 
NC(0) Event Rate: 
  9241±2832 (29%)
 
Error Bars:
● Fit Errors – 2       
  68% Confidence      
  Interval
● Statistical Error on 
  the data and MC
● Bin-by-bin                
  Acceptance              
  Correction Errors

No acceptance correction for events with E

 < 1.0 GeV



36

Accounting for 
Systematic Errors

Sources of  

Systematic Error  
 

● Hadronization Model

● Cross Section Models

● Intranuclear 
Rescattering Model

● Detector Calibration

● NuMI  Flux

Single Systematic   

Mock Data (SSMD)  
 

● Pupose:

– Optimize fits

– Understand systematics

● Method:

– Use Reweighted MC as data

– Fit using 3 norm. fit params.

– Analyze fit results
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Single Systematic Mock Data 
Studies: Two Extremes

E
M

 E
n

erg
y S

cale

2/ndf = 0.02
            N

fit
 = 6696

           N
MC

 = 7971

Changes to cos-vs-E
vis

 

distributions accounted for 
by background template 
normalizations.

2/ndf = 3.34
            N

fit
 = 9645

           N
MC

 = 7971

Causes shape changes to 
the cos-vs-E

vis
 distributions 

requires additional fit 
parameter.

A
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s 
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Single Systematic Mock Data 
Studies: Two Extremes

E
M
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n

erg
y S

cale

2/ndf = 0.02
            N

fit
 = 6696

           N
MC

 = 7971

Changes to cos-vs-E
vis

 

distributions accounted for 
by background template 
normalizations. 

2/ndf = 3.34
            N

fit
 = 9645

           N
MC

 = 7971

Causes shape changes to 
the cos-vs-E

vis
 distributions 

requires additional fit 
parameter.
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Measurement Sensitivity:
Mock Data Studies

Random fluctuations of:
● The coherent NC(0)       
  event rate (N

input
)

● 22 systematic error          
  sources
● Bin counts (Poisson        
  statistics)
 

Measured number of 
coherent NC(0)   
events (N

fit
)

 

Coherent NC(0) events 
 in the MC (N

0
)



Measurement Sensitivity:
Mock Data Studies

Fractional Deviation 
(f ) of N

fit
 from N

input

Width of f used to 
determine the 
experimental error 
from:
 

● Statistical fluctuations
 

● Systematic error         
  sources         

f =
N fit−N input
N input
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Mock Data Studies

One   limits on fit parameters
● Based on Systematic Error Studies
● Used in the penalty terms of the fits
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Mock Data Studies

43.5% of 
the area
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The Coherent NC(0)
Cross Section (E


 > 1.0 GeV)

● E = Neutrino exposure [PoT]

● M
T
 = Target mass [nuclei]

●  = Integrated flux [/cm2/PoT]
 

● E = (2.8±0.028) x 1020  PoT

● M
T
 = (3.57±0.001) x 1029 nuclei

●  = (2.93±0.23) x 10-8 /cm2/PoT

=
N

E M T 

=
9241

2.8×3.57×2.93×1041

● Detector Makeup

– ~80% Fe56

– ~20% C12

● Avg Nucleus = 48 
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The Coherent NC(0)
Cross Section (E


 > 1.0 GeV)

● E = Neutrino exposure [PoT]

● M
T
 = Target mass [nuclei]

●  = Integrated flux [/cm2/PoT]
 

● E = (2.8±0.028) x 1020  PoT

● M
T
 = (3.57±0.001) x 1029 nuclei

●  = (2.93±0.23) x 10-8 /cm2/PoT

=
N

E M T 

=31.6±10.5×10−40 cm2

Nucl. A=48

● Detector Makeup

– ~80% Fe56

– ~20% C12

● Avg Nucleus = 48 
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The Coherent NC(0)
Cross Section – on Fe56

● E = (2.8±0.028) x 1020  PoT

● M
T
 = (2.89±0.001) x 1029 Fe56 nuclei

●  = (2.93±0.23) x 10-8 /cm2/PoT

=
N

E M T 

=35.3±12.4×10−40 cm2

Fe56Nucleus

8372
Coherent NC(0) 

Events on Fe56

● NEUGEN3 Cross section ratio
 

● ~90.6% of events occur on Fe56

 

● Additional 20% uncertainty
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The Coherent NC(0)
Cross Section – on C12

● E = (2.8±0.028) x 1020  PoT

● M
T
 = (6.57±0.001) x 1028 C12 nuclei

●  = (2.93±0.23) x 10-8 /cm2/PoT

=
N

E M T 

=16.1±8.5×10−40 cm2

C 12Nucleus

869
Coherent NC(0) 

Events on C12

● NEUGEN3 Cross section ratio
 

● ~9.4% of events occur on C12

 

● Additional 20% uncertainty
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Cross Section on Fe56 and C12
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Fully Acceptance Corrected 
Coherent NC(0) Cross Section

  

● E = (2.8±0.028) x 1020  PoT

● M
T
 = (3.57±0.001) x 1029 nuclei

●  = (2.93±0.23) x 10-8 /cm2/PoT

=
N

E M T 

=57.3±22.2×10−40 cm2

Nucl. A=48

16,762
Coherent NC(0) 
Events (A = 48)

● Monte Carlo correction factor 
 

● 45% of coherent NC(0) events  
  have E


 < 1.0 GeV

● Additional 20% uncertainty
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Cross Section E

-Dependence

All results scaled 
to A = 48 with 
NEUGEN3 cross 
section ratios

MINOS
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Cross Section E

-Dependence

All results scaled 
to A  = 48 with 
NEUGEN3 cross 
section ratios

Several results 
reported relative     
to the Rein-Sehgal 
cross section
 

● 15 ft B.C.
 

● MiniBooNE
 

● SciBooNE
 

Measurements 
scaled to the 
NEUGEN3 curve
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Cross Section A-Dependence

All results scaled to E

 = 4.9 GeV

A
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Cross Secti on A-Dependence

All results scaled to E

 = 4.9 GeV

A
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World Coherent NC(0)
Cross Section Table



54

Conclusions

● First measurement of the coherent NC(0) 
scattering on nucleus with an average A > 30.

● First evidence for coherent NC(0) scattering 
on iron (Fe56).

● Measurement consistent with the NEUGEN3 
prediction and the Berger-Sehgal model.

● Confirmation of the PCAC hypothesis in the 
relevant kinematic ranges. 

● MINOS anti-neutrino data can be used to 
make a follow-up measurement.
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Backup Slides
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Coherent NC(0) Event
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Mock Data Studies
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\

Calculating the Event Fractions 

r≡
 Fe

C

N=N FeNC M=M FeM C=0.8M0.2M

 Fe=
N Fe

E M Fe

r= N Fe

E M Fe  EM C

N C
⇒ N Fe=N  M Fe r

M CM Fe r 

C=
N C

EM C
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