The 5-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation

Eiichiro Komatsu (Texas Cosmology Center, UT Austin)
Particle Physics Seminar, BNL, March 11, 2009
Texas Cosmology Center (TCC)
The University of Texas Austin

• The new Cosmology Center, founded in January 2009, at the University of Texas at Austin!

• www.tcc.utexas.edu

Research Unit, Texas Cosmology Center

Astronomy
Volker Bromm
Karl Gebhardt
Gary Hill
Eiichiro Komatsu (Director)
Milos Milosavljevic
Paul Shapiro

Physics
Duane Dicus
Jacques Distler
Willy Fischler
Vadim Kaplunovsky
Sonia Paban
Steven Weinberg
WMAP at Lagrange 2 (L2) Point

June 2001:
WMAP launched!

February 2003:
The first-year data release

March 2006:
The three-year data release

March 2008:
The five-year data release

- L2 is a million miles from Earth
- WMAP leaves Earth, Moon, and Sun behind it to avoid radiation from them
WMAP Measures Microwaves From the Universe

- The mean temperature of photons in the Universe today is 2.725 K
- WMAP is capable of measuring the temperature contrast down to better than one part in millionth
WMAP Spacecraft

Radiative Cooling: No Cryogenic System

- line of sight
- back to back Gregorian optics, 1.4 x 1.6 m primaries
- upper omni antenna
- medium gain antennae
- deployed solar array w/ web shielding
- thermally isolated instrument cylinder
- secondary reflectors
- focal plane assembly feed horns
- passive thermal radiator

Warm spacecraft with:
- instrument electronics
- attitude control/propulsion
- command/data handling
- battery and power control

60K

90K

300K
Journey Backwards in Time

- The Cosmic Microwave Background (CMB) is *the fossil light from the Big Bang*
- This is the oldest light that one can ever hope to measure
- CMB is a *direct* image of the Universe when the Universe was only 380,000 years old

- CMB photons, after released from the cosmic plasma “soup,” traveled for **13.7 billion years** to reach us.
- CMB collects information about the Universe as it travels through it.
Hinshaw et al.
Galaxy-cleaned Map

Hinshaw et al.

WMAP 5-year
WMAP 5-Year Papers

• **Hill et al.**, “Beam Maps and Window Functions” *ApJS, 180, 246*

• **Gold et al.**, “Galactic Foreground Emission” *ApJS, 180, 265*

• **Wright et al.**, “Source Catalogue” *ApJS, 180, 283*

• **Nolta et al.**, “Angular Power Spectra” *ApJS, 180, 296*

• **Dunkley et al.**, “Likelihoods and Parameters from the WMAP data” *ApJS, 180, 306*

• **Komatsu et al.**, “Cosmological Interpretation” *ApJS, 180, 330*
WMAP 5-Year Science Team

- C.L. Bennett
- G. Hinshaw
- N. Jarosik
- S.S. Meyer
- L. Page
- D.N. Spergel
- E.L. Wright
- M.R. Greason
- M. Halpern
- R.S. Hill
- A. Kogut
- M. Limon
- N. Odegard
- G.S. Tucker
- J. L. Weiland
- E. Wollack
- J. Dunkley
- B. Gold
- E. Komatsu
- D. Larson
- M.R. Nolta

Special Thanks to WMAP Graduates!

- C. Barnes
- R. Bean
- O. Dore
- H.V. Peiris
- L. Verde
Universe today

- Age: 13.72 ± 0.12 Gyr
- Atoms: $4.56 \pm 0.15\%$
- Dark Matter: $22.8 \pm 1.3\%$
- Vacuum Energy: $72.6 \pm 1.5\%$

When CMB was released 13.7 B yrs ago

- A significant contribution from the cosmic neutrino background
How Did We Use This Map?
Measurements totally signal dominated to $l=530$

Much improved measurement of the 3rd peak!
The Cosmic Sound Wave

Note consistency around the 3rd-peak region
The Cosmic Sound Wave

• We measure the composition of the Universe by analyzing the wave form of the cosmic sound waves.
CMB to Ω_{bh}^2 & Ω_m^2

- 1-to-2: baryon-to-photon; 1-to-3: matter-to-radiation ratio
- $\Omega_\gamma = 2.47 \times 10^{-5} h^{-2}$ & $\Omega_r = \Omega_\gamma + \Omega_\nu = 1.69 \Omega_\gamma = 4.17 \times 10^{-5} h^{-2}$
Effective Number of Neutrino Species, N_{eff}

- For relativistic neutrinos, the energy density is given by
 \[\rho_\nu = N_{\text{eff}} \left(\frac{7\pi^2}{120} \right) T_\nu^4 \]
 where $N_{\text{eff}} = 3.04$ for the standard model, and $T_\nu = (4/11)^{1/3} T_{\text{photon}}$

- Adding more relativistic neutrino species (or any other relativistic components) delays the epoch of the matter-radiation equality, as
 \[1 + z_{\text{EQ}} = \left(\frac{\Omega_m h^2}{2.47 \times 10^{-5}} \right) / (1 + 0.227 N_{\text{eff}}) \]
3rd-peak to z_{EQ}

- It is z_{EQ} that is observable from CMB.
- If we fix N_{eff}, we can determine $\Omega_m h^2$; otherwise...
• N_{eff} and $\Omega_m h^2$ are degenerate.

• Adding information on $\Omega_m h^2$ from the distance measurements (BAO, SN, HST) breaks the degeneracy:

 • $N_{\text{eff}} = 4.4 \pm 1.5$ (68%CL)
WMAP-only Lower Limit

- N_{eff} and $\Omega_m h^2$ are degenerate - but, look.
- **WMAP-only lower limit is not $N_{\text{eff}}=0$**
- $N_{\text{eff}}>2.3$ (95%CL) [Dunkley et al.]
Cosmic Neutrino Background

- How do neutrinos affect the CMB?
 - *Neutrinos add to the radiation energy density*, which delays the epoch at which the Universe became matter-dominated. The larger the number of neutrino species is, the later the matter-radiation equality, z_{equality}, becomes.
 - This effect can be mimicked by lower matter density.
 - *Neutrino perturbations* affect metric perturbations as well as the photon-baryon plasma, through which CMB anisotropy is affected.
• Multiplicative phase shift is due to the change in z_{equality}
 • Degenerate with $\Omega_m h^2$
• Additive phase shift is due to neutrino perturbations
 • No degeneracy
 (Bashinsky & Seljak 2004)

$\Delta \chi^2 = 8.2 \rightarrow 99.5\% \text{ CL}$
Cosmic/Laboratory Consistency

- From WMAP\((z=10^{9.0})+BAO+SN\)
 - \(N_{\text{eff}} = 4.4 \pm 1.5\)
- From the Big Bang Nucleosynthesis \((z=10^9)\)
 - \(N_{\text{eff}} = 2.5 \pm 0.4\) (Gary Steigman)
- From the decay width of Z bosons measured in lab
 - \(N_{\text{neutrino}} = 2.984 \pm 0.008\) (LEP)
Σm_ν from CMB alone

- There is a simple limit by which one can constrain Σm_ν using the primary CMB from $z=1090$ alone (ignoring gravitational lensing of CMB by the intervening mass distribution).

- When all of neutrinos were lighter than ~ 0.6 eV, they were still relativistic at the time of photon decoupling at $z=1090$ (photon temperature $3000K=0.26eV$).

 - $<E_\nu> = 3.15(4/11)^{1/3}T_{photon} = 0.58$ eV

- Neutrino masses didn’t matter if they were relativistic!

- For degenerate neutrinos, $\Sigma m_\nu = 3.04 \times 0.58 = 1.8$ eV

 - If $\Sigma m_\nu \ll 1.8$eV, CMB alone cannot see it
CMB + H_0 Helps

- WMAP 5-year alone: $\sum m_\nu < 1.3\text{eV}$ (95%CL)
- WMAP+BAO+SN: $\sum m_\nu < 0.67\text{eV}$ (95%CL)
- Where did the improvement comes from? It’s the present-day Hubble expansion rate, H_0
Neutrino Subtlety

• For $\Sigma m_\nu << 1.8$eV, neutrinos were relativistic at $z=1090$

• But, we know that $\Sigma m_\nu > 0.05$eV from neutrino oscillation experiments

• This means that neutrinos are definitely non-relativistic today!

• So, today's value of Ω_m is the sum of baryons, CDM, and neutrinos: $\Omega_m h^2 = (\Omega_b + \Omega_c)h^2 + 0.0106(\Sigma m_\nu/1$eV)
Matter-Radiation Equality

• However, since neutrinos were relativistic before $z=1090$, the matter-radiation equality is determined by:

 $1+z_{\text{EQ}} = (\Omega_b+\Omega_c)h^2 / 4.17 \times 10^{-5}$ (observable by CMB)

• Now, recall $\Omega_m h^2 = (\Omega_b+\Omega_c)h^2 + 0.0106(\sum m_\nu/1\text{eV})$

• For a given $\Omega_m h^2$ constrained by BAO+SN, adding $\sum m_\nu$ makes $(\Omega_b+\Omega_c)h^2$ smaller \rightarrow smaller z_{EQ} \rightarrow Radiation Era lasts longer

• This effect shifts the first peak to a lower multipole
\[\Sigma m_\nu: \text{Shifting the Peak To Low-}l \]

- But, lowering \(H_0 \) shifts the peak in the opposite direction. So...
Shift of Peak Absorbed by H_0

- Here is a catch:
 - Shift of the first peak to a lower multipole can be canceled by lowering H_0!

- Same thing happens to curvature of the universe: making the universe positively curved shifts the first peak to a lower multipole, but this effect can be canceled by lowering H_0.

- So, 30% positively curved universe is consistent with the WMAP data, IF $H_0=30\text{km/s/Mpc}$

Ichikawa, Fukugita & Kawasaki (2005)
How About Polarization?

- Polarization is a rank-2 tensor field.
- One can decompose it into a divergence-like “E-mode” and a vorticity-like “B-mode”.

Seljak & Zaldarriaga (1997); Kamionkowski, Kosowsky, Stebbins (1997)
Decisive confirmation of basic theoretical understanding of perturbations in the universe!
5-Year E-Mode Polarization Power Spectrum at Low l

5-sigma detection of the E-mode polarization at $l=2-6$. (Errors include cosmic variance)

Symbols are upper limits
Polarization From Reionization

- CMB was emitted at $z=1090$.
- Some fraction ($\sim 9\%$) of CMB was re-scattered in a reionized universe: *erased temperature anisotropy, but created polarization*.
- The reionization redshift of ~ 11 would correspond to 400 million years after the Big-Bang.
\(z_{\text{reion}} = 6 \) is Excluded

- Assuming an instantaneous reionization from \(x_e = 0 \) to \(x_e = 1 \) at \(z_{\text{reion}} \), we find \(z_{\text{reion}} = 11.0 \pm 1.4 \) (68% CL).

- The reionization was not an instantaneous process at \(z \sim 6 \). (The 3-sigma lower bound is \(z_{\text{reion}} > 6.7 \).)
B-modes

- No detection of B-mode polarization yet.
- I will come back to this later.
Tilting = Primordial Shape \rightarrow Inflation
“Red” Spectrum: $n_s < 1$
“Blue” Spectrum: $n_s > 1$
Getting rid of the Sound Waves

Angular Power Spectrum

\[\ell (\ell + 1) C_\ell^{TT}/2\pi \] [\mu K^2]

Large Scale

Small Scale

Primordial Ripples

Multipole moment \(\ell \)
The Early Universe Could Have Done This Instead

Angular Power Spectrum

More Power on Large Scales

$\ell(l+1)C_\ell^{TT}/2\pi [\mu K^2]$
More Power on Small Scales
\((n_s > 1)\)
Expectations From 1970’s: $n_s = 1$

- Metric perturbations in g_{ij} (let’s call that “curvature perturbations” Φ) is related to δ via

 $k^2 \Phi(k) = 4\pi G \rho a^2 \delta(k)$

- Variance of $\Phi(x)$ in position space is given by

 $\langle \Phi^2(x) \rangle = \int \ln k \ k^3 |\Phi(k)|^2$

- In order to avoid the situation in which curvature (geometry) diverges on small or large scales, a “scale-invariant spectrum” was proposed: $k^3 |\Phi(k)|^2 = \text{const.}$

- This leads to the expectation: $P(k) = |\delta(k)|^2 = k^{n_s}$ ($n_s = 1$)

- Harrison 1970; Zel’dovich 1972; Peebles & Yu 1970
• WMAP-alone: $n_s = \mathbf{0.963} \pm 0.014 \pm 0.015$ (Dunkley et al.)

• 2.5-sigma away from $n_s = 1$, “scale invariant spectrum”

• n_s is degenerate with $\Omega_b h^2$; thus, we can’t really improve upon n_s further unless we improve upon $\Omega_b h^2$
Deviation from $n_s = 1$

- This was expected by many inflationary models.
- In $n_s - r$ plane (where r is called the “tensor-to-scalar ratio,” which is $P(k)$ of gravitational waves divided by $P(k)$ of density fluctuations) many inflationary models are compatible with the current data.
- Many models have been excluded also.
Searching for Primordial Gravitational Waves in CMB

- Not only do inflation models produce density fluctuations, but also primordial gravitational waves
- Some predict the observable amount ($r>0.01$), some don’t
 - Current limit: $r<0.22$ (95%CL)
- Alternative scenarios (e.g., New Ekpyrotic) don’t
- A powerful probe for testing inflation and testing specific models: next “Holy Grail” for CMBist
How GW Affects CMB

• If all the other parameters (n_s in particular) are fixed...

 • Low-l polarization gives $r<20$ (95% CL)

 • + high-l polarization gives $r<2$ (95% CL)

 • + low-l temperature gives $r<0.2$ (95% CL)
Lowering a “Limbo Bar”

- $\lambda \phi^4$ is totally out. (unless you invoke, e.g., non-minimal coupling, to suppress r...)

- $m^2\phi^2$ is within 95% CL.

 - Future WMAP data would be able to push it to outside of 95% CL, if $m^2\phi^2$ is not the right model.

- N-flation $m^2\phi^2$ (Easther&McAllister) is being pushed out

- PL inflation $[a(t)\sim t^p]$ with $p<60$ is out.

- A blue index ($n_s>1$) region of hybrid inflation is disfavored

Komatsu et al. 48
Gaussianity

- In the simplest model of inflation, the distribution of primordial fluctuations is close to a Gaussian with random phases.
- The level of non-Gaussianity predicted by the simplest model is well below the current detection limit.
- A convincing detection of primordial non-Gaussianity will rule out most of inflation models in the literature.
- Detection of non-Gaussianity would be a breakthrough in cosmology
Getting the Most Out of Fluctuations, $\delta(x)$

- In Fourier space, $\delta(k) = A(k)\exp(i\varphi_k)$

- **Power**: $P(k) = \langle |\delta(k)|^2 \rangle = A^2(k)$

- **Phase**: φ_k

- We can use the observed distribution of...
 - matter (e.g., galaxies, gas)
 - radiation (e.g., Cosmic Microwave Background)

- to learn about both $P(k)$ and φ_k.
What About Phase, φ_k

- There were expectations also:
 - Random phases! (Peebles, ...)
 - Collection of random, uncorrelated phases leads to the most famous probability distribution of δ:

Gaussian Distribution
The one-point distribution of WMAP map looks pretty Gaussian.

- Left to right: Q (41GHz), V (61GHz), W (94GHz).

Deviation from Gaussianity is small, if any.
Inflation Likes This Result

- According to inflation (Guth & Yi; Hawking; Starobinsky; Bardeen, Steinhardt & Turner), CMB anisotropy was created from **quantum fluctuations of a scalar field in Bunch-Davies vacuum** during inflation.

- Successful inflation (with the expansion factor more than e^{60}) *demands* the scalar field be almost interaction-free.

- The wave function of free fields in the ground state is a Gaussian!
But, Not Exactly Gaussian

• Of course, there are always corrections to the simplest statement like this

• For one, inflaton field does have interactions. They are simply weak – of order the so-called slow-roll parameters, ε and η, which are $O(0.01)$
Simplified Treatment

• Let’s try to capture field interactions, or whatever non-linearities that might have been there during inflation, by the following simple, order-of-magnitude form (Komatsu & Spergel 2001):

 \[\Phi(x) = \Phi_{\text{gaussian}}(x) + f_{\text{NL}} [\Phi_{\text{gaussian}}(x)]^2 \]

• One finds \(f_{\text{NL}} = O(0.01) \) from inflation (Maldacena 2003; Acquaviva et al. 2003)

• This is a powerful prediction of inflation
Why Study Non-Gaussianity?

- Because a detection of f_{NL} has a best chance of **ruling out the largest class of inflation models**.

- Namely, it will rule out inflation models based upon
 - a single scalar field with
 - the canonical kinetic term that
 - rolled down a smooth scalar potential slowly, and
 - was initially in the Bunch-Davies vacuum.

Detection of non-Gaussianity would be a major breakthrough in cosmology.
Tool: Bispectrum

- **Bispectrum = Fourier Trans. of 3-pt Function**
- **The bispectrum vanishes** for Gaussian fluctuations with random phases.
- Any non-zero detection of the bispectrum indicates the presence of (some kind of) non-Gaussianity.
- A sensitive tool for finding non-Gaussianity.
No Detection at >95%CL

- $-9 < f_{NL} < 111$ (95% CL)
- $f_{NL} = 51 \pm 30$ (68% CL)
- Latest reanalysis: $f_{NL} = 38 \pm 20$ (68% CL) [Smith et al.]
- These numbers mean that the primordial curvature perturbations are Gaussian to **0.1% level**.
 - This result provides the strongest evidence for quantum origin of primordial fluctuations during inflation.
The WMAP 5-year data indicate that the simplest cosmological model that fits the data has 6 parameters: the amplitude of fluctuations, baryon density, dark matter density, dark energy density, the optical depth, and n_s.

Other parameters are consistent with the standard values: $N_\nu=4.4\pm1.5$, $\Sigma m_\nu<0.67\text{eV}$, ...

No detection of gravitational waves ($r<0.22$) or non-Gaussianity ($f_{NL}=38\pm20$) yet

I didn’t have time to talk about it, but the spatial geometry of the universe is flat to 1%, and the dark energy is consistent with C.C. to 10%.
Looking Ahead...

• With more WMAP observations, exciting discoveries may be waiting for us. Two examples for which we might be seeing some hints from the 5-year data:

 • Non-Gaussianity: If $f_{\text{NL}} \sim 40$, we will see it at ~ 2.5 sigma level with 9 years of data.

 • Gravitational waves (r) and tilt (n_s): $m^2 \phi^2$ can be pushed out of the favorable parameter region

 • More, maybe seeing a hint of it if $m^2 \phi^2$ is indeed the correct model?!