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WMAP at Lagrange 2 (L2) Point

• L2 is a million miles from Earth

• WMAP leaves Earth, Moon, and Sun 
behind it to avoid radiation from them

June 2001: 
WMAP launched!

February 2003:
The first-year data 

release

March 2006:
The three-year data 

release

March 2008:
The five-year 
data release
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WMAP Measures 
Microwaves From 

the Universe

• The mean temperature of photons in the Universe 
today is 2.725 K

• WMAP is capable of measuring the temperature 
contrast down to better than one part in millionth
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WMAPWMAP Spacecraft Spacecraft

MAP990422

thermally isolated
instrument cylinder

secondary
reflectors

focal plane assembly
feed horns

back to back
Gregorian optics,

1.4 x 1.6 m primaries

upper omni antenna
line of sight

deployed solar array w/ web shielding

medium gain antennae

passive thermal radiator

warm spacecraft with:
- instrument electronics
- attitude control/propulsion
- command/data handling
- battery and power control

60K

90K

300K

Radiative Cooling: No Cryogenic System
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Journey Backwards in Time

• The Cosmic Microwave 
Background (CMB) is 
the fossil light from 
the Big Bang

• This is the oldest light 
that one can ever hope 
to measure

• CMB is a direct image 
of the Universe when 
the Universe was only 
380,000 years old

• CMB photons, after released from the 
cosmic plasma “soup,” traveled for 13.7 

billion years to reach us.
• CMB collects information about the 

Universe as it travels through it.
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Hinshaw et al.
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Galaxy-cleaned Map
Hinshaw et al.
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WMAP 5-Year Papers
• Hinshaw et al., “Data Processing, Sky Maps, and Basic Results” 

ApJS, 180, 225 (2009)

• Hill et al., “Beam Maps and Window Functions” ApJS, 180, 246

• Gold et al., “Galactic Foreground Emission” ApJS, 180, 265

• Wright et al., “Source Catalogue” ApJS, 180, 283

• Nolta et al., “Angular Power Spectra” ApJS, 180, 296

• Dunkley et al., “Likelihoods and Parameters from the WMAP 
data” ApJS, 180, 306

• Komatsu et al., “Cosmological Interpretation” ApJS, 180, 33010
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Thanks to
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Graduates!
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• Universe today

• Age: 13.72 +/- 0.12 Gyr

• Atoms: 4.56 +/- 0.15 %

• Dark Matter: 22.8 +/- 1.3%

• Vacuum Energy: 72.6 +/- 1.5%

• When CMB was released 13.7 B yrs ago

• A significant contribution from the 
cosmic neutrino background

~WMAP 5-Year~ 
Pie Chart Update!

Komatsu et al.
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How Did We Use This Map?
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The Spectral Analysis
Nolta et al.

Measurements 
totally signal 
dominated to 

l=530

Much improved 
measurement of 

the 3rd peak!
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The Cosmic Sound Wave
Nolta et al.

Note consistency 
around the 3rd-

peak region
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The Cosmic Sound Wave

• We measure the composition of the Universe by 
analyzing the wave form of the cosmic sound waves.
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CMB to Ωbh2 & Ωmh2

• 1-to-2: baryon-to-photon; 1-to-3: matter-to-radiation ratio

• Ωγ=2.47x10-5h-2  &  Ωr=Ωγ+Ων=1.69Ωγ=4.17x10-5h-2

Ωb/Ωγ Ωm/Ωr

=1+zEQ
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Effective Number of 
Neutrino Species, Neff

• For relativistic neutrinos, the energy density is given by

• ρν = Neff (7π2/120) Tν4

• where Neff=3.04 for the standard model, and 
Tν=(4/11)1/3Tphoton

• Adding more relativistic neutrino species (or any 
other relativistic components) delays the epoch of 
the matter-radiation equality, as

•1+zEQ = (Ωmh2/2.47x10-5) / (1+0.227Neff)
18



3rd-peak to zEQ

• It is zEQ that is observable from CMB.

• If we fix Neff, we can determine Ωmh2; otherwise...

Ωm/Ωr

=1+zEQ
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Neff-Ωmh2 Degeneracy

• Neff and Ωmh2 are degenerate.

• Adding information on Ωmh2 from the distance 
measurements (BAO, SN, HST) breaks the degeneracy:

• Neff = 4.4 ± 1.5 (68%CL)

Komatsu et al.
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WMAP-only Lower Limit

• Neff and Ωmh2 are degenerate - but, look.

• WMAP-only lower limit is not Neff=0

• Neff>2.3 (95%CL) [Dunkley et al.] 21



Cosmic Neutrino Background
• How do neutrinos affect the CMB?

• Neutrinos add to the radiation energy density, which delays 
the epoch at which the Universe became matter-
dominated. The larger the number of neutrino species is, 
the later the matter-radiation equality, zequality, becomes.

• This effect can be mimicked by lower matter density.

• Neutrino perturbations affect metric perturbations as well 
as the photon-baryon plasma, through which CMB 
anisotropy is affected. 22



CNB As Seen By WMAP

• Multiplicative phase shift is 
due to the change in zequality

• Degenerate with Ωmh2

• Additive phase shift is due to 
neutrino perturbations

• No degeneracy 
(Bashinsky & Seljak 2004)

Red: Neff=3.04

Blue: Neff=0

Δχ2=8.2 -> 99.5% CL C
l(N

=
0)

/C
l(N

=
3.

04
)-

1
Dunkley et al.
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Cosmic/Laboratory 
Consistency

• From WMAP(z=1090)+BAO+SN 

• Neff = 4.4 ± 1.5 

• From the Big Bang Nucleosynthesis (z=109)

• Neff = 2.5 ± 0.4 (Gary Steigman)

• From the decay width of Z bosons measured in lab

• Nneutrino = 2.984 ± 0.008 (LEP)

Komatsu et al.
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∑mν from CMB alone
• There is a simple limit by which one can constrain ∑mν 

using the primary CMB from z=1090 alone (ignoring 
gravitational lensing of CMB by the intervening mass 
distribution)

• When all of neutrinos were lighter than ~0.6 eV, they 
were still relativistic at the time of photon decoupling at 
z=1090 (photon temperature 3000K=0.26eV). 

• <Eν> = 3.15(4/11)1/3Tphoton = 0.58 eV

• Neutrino masses didn’t matter if they were relativistic!

• For degenerate neurinos, ∑mν = 3.04x0.58 = 1.8 eV

• If ∑mν << 1.8eV, CMB alone cannot see it 25



CMB + H0 Helps

• WMAP 5-year alone: 
∑mν<1.3eV (95%CL)

• WMAP+BAO+SN: 
∑mν<0.67eV (95%CL)

• Where did the improvement 
comes from? It’s the present-
day Hubble expansion rate, H0.

26

Komatsu et al.



Neutrino Subtlety

• For ∑mν<<1.8eV, neutrinos were relativistic at z=1090

• But, we know that ∑mν>0.05eV from neutrino 
oscillation experiments

• This means that neutrinos are definitely non-
relativistic today!

• So, today’s value of Ωm is the sum of baryons, CDM, and 
neutrinos: Ωmh2 = (Ωb+Ωc)h2 + 0.0106(∑mν/1eV)
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Matter-Radiation Equality
• However, since neutrinos were relativistic before 

z=1090, the matter-radiation equality is determined by:

• 1+zEQ = (Ωb+Ωc)h2 / 4.17x10-5 (observable by CMB)

• Now, recall Ωmh2 = (Ωb+Ωc)h2 + 0.0106(∑mν/1eV)

• For a given Ωmh2 constrained by BAO+SN, adding 
∑mν makes (Ωb+Ωc)h2 smaller -> smaller zEQ -> 
Radiation Era lasts longer

• This effect shifts the first peak to a lower 
multipole 28



∑mν: Shifting the Peak To Low-l

• But, lowering H0 shifts the peak in the opposite 
direction. So...

29

∑mν

H0



Shift of Peak Absorbed by H0
• Here is a catch:

• Shift of the first peak to 
a lower multipole can be 
canceled by lowering H0!

• Same thing happens to curvature of 
the universe: making the universe 
positively curved shifts the first peak 
to a lower multipole, but this effect 
can be canceld by lowering H0.

• So, 30% positively curved univese is 
consistent with the WMAP data, IF 
H0=30km/s/Mpc

Ichikawa, Fukugita & Kawasaki (2005)
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How About Polarization?
•Polarization is a rank-2 tensor field.
•One can decompose it into a divergence-like “E-mode” 
and a vorticity-like “B-mode”.

E-mode
B-mode

Seljak & Zaldarriaga (1997); Kamionkowski, Kosowsky, Stebbins (1997)
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5-Year TxE Power Spectrum
Nolta et al.
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Decisive confirmation of basic 
theoretical understanding of 

perturbations in the universe!



5-Year E-Mode Polarization 
Power Spectrum at Low l

Nolta et al.

Black 
Symbols are 
upper limits

5-sigma detection of the E-
mode polarization at l=2-6. (Errors 

include cosmic variance)
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Polarization From Reionization
• CMB was emitted at z=1090.
• Some fraction (~9%) of CMB was re-scattered in a reionized 

universe: erased temperature anisotropy, but created polarization.
• The reionization redshift of ~11 would correspond to 400 million 

years after the Big-Bang.

z=1090, τ～1

z～11, 
τ=0.087±0.017 
(WMAP 5-year)

First-star 
formation

z=0

IONIZED

REIONIZED

NEUTRAL
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Zreion=6 Is Excluded

• Assuming an instantaneous reionization from xe=0 to 
xe=1 at zreion, we find zreion=11.0 +/- 1.4 (68 % CL). 

• The reionization was not an instantaneous process at 
z~6.  (The 3-sigma lower bound is zreion>6.7.)

Dunkley et al.

35



B-modes

• No detection of B-mode polarization yet.

• I will come back to this later.
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Tilting=Primordial Shape->Inflation
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“Red” Spectrum: ns < 1
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“Blue” Spectrum: ns > 1
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Getting rid of the Sound Waves
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Primordial Ripples

Large Scale Small Scale



The Early Universe Could Have Done This Instead
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More Power on Large Scales
(ns<1)

Small ScaleLarge Scale



...or, This.
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More Power on Small Scales
(ns>1)

Small ScaleLarge Scale



Expectations From 1970’s: ns=1
• Metric perturbations in gij (let’s call that “curvature 

perturbations” Φ) is related to δ via

• k2Φ(k)=4πGρa2δ(k)

• Variance of Φ(x) in position space is given by 

• <Φ2(x)>=∫lnk k3|Φ(k)|2

• In order to avoid the situation in which curvature 
(geometry) diverges on small or large scales, a “scale-
invariant spectrum” was proposed: k3|Φ(k)|2 = const.

• This leads to the expectation: P(k)=|δ(k)|2=kns (ns=1)

• Harrison 1970; Zel’dovich 1972; Peebles&Yu 1970 43



Is ns different from ONE?

• WMAP-alone: ns=0.963 (+0.014) (-0.015) (Dunkley et al.)

• 2.5-sigma away from ns=1, “scale invariant spectrum”

• ns is degenerate with Ωbh2; thus, we can’t really improve 
upon ns further unless we improve upon Ωbh2

Komatsu et al.
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Deviation from ns=1

• This was expected by many inflationary 
models

• In ns–r plane (where r is called the “tensor-
to-scalar ratio,” which is P(k) of 
gravitational waves divided by P(k) of 
density fluctuations) many inflationary 
models are compatible with the 
current data

• Many models have been excluded also
45



Searching for Primordial 
Gravitational Waves in CMB
• Not only do inflation models produce density 

fluctuations, but also primordial gravitational waves

• Some predict the observable amount (r>0.01), some 
don’t 

• Current limit: r<0.22 (95%CL)

• Alternative scenarios (e.g., New Ekpyrotic) don’t

• A powerful probe for testing inflation and testing 
specific models: next “Holy Grail” for CMBist
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How GW Affects CMB

• If all the other parameters (ns in particular) are fixed...

• Low-l polarization gives r<20 (95% CL)

• + high-l polarization gives r<2 (95% CL)

• + low-l temperature gives r<0.2 (95% CL)

Komatsu et al.
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Lowering a “Limbo Bar”
• λφ4 is totally out. (unless you invoke, e.g., 

non-minimal coupling, to suppress r...)

• m2φ2 is within 95% CL. 

• Future WMAP data would be able to 
push it to outside of 95% CL, if m2φ2 is 
not the right model.

• N-flation m2φ2 (Easther&McAllister) is 
being pushed out

• PL inflation [a(t)~tp] with p<60 is out. 

• A blue index (ns>1) region of hybrid 
inflation is disfavored

Komatsu et al.
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Gaussianity

• In the simplest model of inflation, the distribution of 
primordial fluctuations is close to a Gaussian with 
random phases.

• The level of non-Gaussianity predicted by the simplest 
model is well below the current detection limit.

• A convincing detection of primordial non-Gaussianity 
will rule out most of inflation models in the literature.

• Detection of non-Gaussianity would be a 
breakthrough in cosmology 49



Getting the Most Out of 
Fluctuations, δ(x)

• In Fourier space, δ(k) = A(k)exp(iφk)

• Power: P(k) = <|δ(k)|2> = A2(k)

• Phase: φk

• We can use the observed distribution of... 

• matter (e.g., galaxies, gas)

• radiation (e.g., Cosmic Microwave Background)

• to learn about both P(k) and φk. 50



What About Phase, φk

• There were expectations also:

• Random phases! (Peebles, ...)

• Collection of random, uncorrelated phases leads to the 
most famous probability distribution of δ:

Gaussian 
Distribution

51



Gaussian? WMAP5
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Take One-point Distribution Function

•The one-point distribution of WMAP map looks 
pretty Gaussian.
–Left to right: Q (41GHz), V (61GHz), W (94GHz).

•Deviation from Gaussianity is small, if any.
53
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Inflation Likes This Result

• According to inflation (Guth & Yi; Hawking; Starobinsky; 
Bardeen, Steinhardt & Turner), CMB anisotropy was 
created from quantum fluctuations of a scalar 
field in Bunch-Davies vacuum during inflation

• Successful inflation (with the expansion factor more than 
e60) demands the scalar field be almost interaction-free

• The wave function of free fields in the ground state is a 
Gaussian!
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But, Not Exactly Gaussian

• Of course, there are always corrections to the simplest 
statement like this

• For one, inflaton field does have interactions. They are 
simply weak – of order the so-called slow-roll 
parameters, ε and η, which are O(0.01)
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Simplified Treatment

• Let’s try to capture field interactions, or whatever non-
linearities that might have been there during inflation, by the 
following simple, order-of-magnitude form (Komatsu & 
Spergel 2001):

• Φ(x) = Φgaussian(x) + fNL[Φgaussian(x)]2

• One finds fNL=O(0.01) from inflation (Maldacena 2003;  
Acquaviva et al. 2003)

• This is a powerful prediction of inflation
56

Earlier work on this form: 
Salopek&Bond (1990); Gangui 

et al. (1994); Verde et al. (2000); 
Wang&Kamionkowski (2000)



Why Study Non-Gaussianity?
• Because a detection of fNL has a best chance of ruling out 

the largest class of inflation models.

• Namely, it will rule out inflation models based upon 

• a single scalar field with

• the canonical kinetic term that

• rolled down a smooth scalar potential slowly, and

• was initially in the Bunch-Davies vacuum.

• Detection of non-Gaussianity would be a major 
breakthrough in cosmology. 57



Tool: Bispectrum

• Bispectrum = Fourier Trans. of 3-pt Function

• The bispectrum vanishes for Gaussian fluctuations 
with random phases. 

• Any non-zero detection of the bispectrum indicates the 
presence of (some kind of) non-Gaussianity.

• A sensitive tool for finding non-Gaussianity.
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No Detection at >95%CL

• -9 < fNL < 111 (95% CL)

• fNL = 51 ± 30 (68% CL)

• Latest reanalysis: fNL = 38 ± 20 (68% CL) [Smith et al.]

• These numbers mean that the primordial curvature 
perturbations are Gaussian to 0.1% level.

• This result provides the strongest evidence for 
quantum origin of primordial fluctuations during 
inflation.

Komatsu et al.
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Summary

60

• The WMAP 5-year data indicate that the simplest 
cosmological model that fits that the data has 6 
parameters: the amplitude of fluctuations, baryon 
density, dark matter density, dark energy density, 
the optical depth, and ns.

• Other parameters are consistent with the standard 
values: Nν=4.4±1.5, ∑mν<0.67eV, ...

• No detection of gravitational waves (r<0.22) or 
non-Gaussianity (fNL=38±20) yet

• I didn’t have time to talk about it, but the spatial 
geometry of the universe is flat to 1%, and the dark 
energy is consistent with C.C. to 10%.



Looking Ahead...
• With more WMAP observations, exciting discoveries 

may be waiting for us. Two examples for which we 
might be seeing some hints from the 5-year data:

• Non-Gaussianity: If fNL~40, we will see it at ~2.5 
sigma level with 9 years of data.

• Gravitational waves (r) and tilt (ns) : m2φ2 can be 
pushed out of the favorable parameter region

• More, maybe seeing a hint of it if m2φ2 is indeed 
the correct model?!
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