Search for New Physics at LHCb

Steven Blusk
Syracuse University

Outline

- Introduction
 - Overview of CKM Picture & CP Violation
 - Measuring the CKM sides & angles
- A next generation B Physics experiments – LHCb
 - Detector
 - Physics opportunities
- Summary
Introduction

• SM great success, but it “cannot” be the final word

• The case for New Physics is clear
 - Particle Physics
 • Hierarchy Problem and Unification with gravity
 • GR and Quantum theory
 • Origin of EWSB
 • Why 3 generations?
 • Masses & coupling constants
 - Cosmology
 • Dark Matter
 • Dark Energy
 • Cosmological constant problem
 • Baryon Asymmetry of the Universe
 • …
The Flavor Connection

- Higgs generates mass for gauge bosons
- Higgs also generates mass for fermions through the Hff^\dagger Yukawa coupling \rightarrow in general 3×3 matrix in SM ($\hat{\gamma}_e$, $\hat{\gamma}_u$, $\hat{\gamma}_d$)
 - Diagonalize to get fermion masses
 - But, what diagonalizes $\hat{\gamma}_u$, doesn’t diagonalize $\hat{\gamma}_d$.
 - $m_u \neq m_d$, $m_c \neq m_s$, $m_t \neq m_b$ \rightarrow $\hat{\gamma}_u \neq \hat{\gamma}_d$
 - $\hat{\gamma}_d$ can be diagonalized, but the cost is an additional unitary transformation.
 - d-type quarks are then rotated with respect to u-type quarks
 - Mass eigenstates \neq Flavor eigenstates
 - CKM matrix (V_{CKM}) encompasses this misalignment.

- CKM matrix is directly tied to the origin of mass i.e., EWSB, Higgs, and its Yukawa coupling to fermions.
CKM Formalism

Mass eigenstates \neq flavor eigenstates

$$L_{CC} = -\frac{g}{\sqrt{2}} \langle \bar{u}, \bar{c}, \bar{t} \rangle_L \gamma^\mu \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} W^\mu \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

3 real parameters $+$ 1 complex phase \Rightarrow if complex phase $\neq 0$ $B \to f \neq \bar{B} \to \bar{f}$

Hierarchy of $|element| \Rightarrow$ Parameterize in powers $\lambda = \sin \theta_C \approx 0.22; (A \approx 0.8)$

K^0 mixing

B_S mixing

D_0 mixing

B^0 mixing

$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

$(1 - \lambda^2/2)V_{ub}^* = \frac{\lambda |V_{cb}|}{|V_{ub}|}$
New Physics - Direct vs Indirect

New Physics likely at high mass

Direct detection of decay products
- leptons, jets, E_T, etc

B meson decays
- NP particles in loops
- NP could compete with SM

Complementary sensitivity to New Physics

Kersting & Hinchcliffe
hep-ph/0003090
Direct Assault on the Standard Model

Direct detection of high-mass particles at the TeV scale

CDF

D0

Tevatron: 1 TeV pp, $L \sim 2 \times 10^{32}$ cm$^{-2}$ s$^{-1}$
General purpose detectors: High p_T, with admirable b physics program
Direct Assault
The Next Generation

CMS & ATLAS: General purpose high p_T, with b\rightarrow\mu X capabilities

LHC: 7 TeV pp, L\sim10^{34} \text{ cm}^{-2} \text{ s}^{-1}
The Indirect Assault on the Standard Model

Indirect "measurements" of the top quark mass from precision EW observables

Barger et al.
PRL 1990,
4 years before top was discovered!

Direct (2006) 171.4±2.1 GeV

Indirect determination of top quark mass from B mixing (1993, before top discovery)

B°_d-B°_s mixing and the prediction of the top-quark mass in an independent particle potential

N. Barik
Physics Department, Utkal University, Bhubaneswar-751004, India

P. Das, A. R. Panda, and K. C. Roy
Physics Department, Kendrapara College, Kendrapara-754271, India
(Received 22 December 1992; revised manuscript received 30 April 1993)

Considering B°_d-B°_s mixing in a potential model of independent quarks by taking the effective interaction Hamiltonian of the standard Salam-Weinberg-Glashow model and subsequently diagonalizing the corresponding mass matrix with respect to B°_d and B°_s states, we obtain an expression for the mass difference ΔM_{B°_d} in terms of the top-quark mass m_t. Using the recent observation of the mixing parameter x_s=0.72±0.15 by the ARGUS Collaboration, we predict the lower bound on the top-quark mass as m_t≥149 GeV. Furthermore, a consideration of experimental mass difference ΔM_{B°_d}=(4.0±0.8)×10^{-3} GeV also leads to m_t=167±1 GeV which is in agreement with the recent experimental bound as well as other theoretical predictions. However, such a prediction of m_t that utilizes the experimental value of the CKM matrix element [V_{td}] may not appear convincing in view of the large uncertainties in the measurement of [V_{td}] so far reported. Therefore using the range of m_t values within its bounds predicted from other independent works, we make a reasonable estimation of [V_{td}].

 Bounds on Standard Model Higgs mass obtained using precision EW, M_W, M_{top}!

W t t W

M_W^2 = M_Z^2 (1 - sin^2 θ_W) (1 + Δρ)

Δρ = \frac{3 G_F M_t^2}{8 \pi^2 - C ln(M_H/300 \text{ GeV})}

W W W

W W W

W H H W

W H H W
- Overconstrain the CKM triangle.
 - Measure \((\rho, \eta)\) using TREES (B, K decay rates)
 - Measure 3 CPV angles in several decay modes (LOOPS)
 - NP can affect one, but not the other…
 - Do we get a consistent picture?

- Rare or forbidden decays
 - SM-suppressed decays (loop diagrams) allow NP to compete.
 - New FC amplitudes & phases (could affect rates and/or CPV angles)
 - \(K \to \pi \nu \nu\) also provides tight constraints!
 - \(\mu \to e \gamma\), etc

- Discover NP, or constrain/interpret NP detected at CMS, ATLAS
Measuring Sides

Work ongoing to reduce both theoretical (dominant) and experimental uncertainties…
Recent advance on B_s mixing – $|V_{td}/V_{ts}|$

$\mathcal{L}(A, \Delta m_s, ...) \propto \Delta m_s
\mathcal{L}(A, \Delta m_s, ...) \propto A \cos(\Delta m_s t)$

NP in Loops?

$\Delta m_d = \frac{G_F^2 m_{B_d} f_2 (m_t^2 / m_W^2) m_t^2 \eta_B f_{B_d}^2 B_{B_d}}{6\pi^2} |V_{td}^* V_{tb}|^2$

$\frac{\Delta m_d}{\Delta m_s} = \frac{m_{B_d} f_{B_d}^2 B_B}{m_{B_s} f_{B_s}^2 B_{B_s}} |V_{td}|^2 \Delta m_d = 0.507 \pm 0.005 \text{ ps}^{-1}$

$\tau_B \sim 1.5 \text{ ps}$

Consistent with SM expectations, but still significant room for NP – ehem... phase!

Period of oscillations $\sim 56 \text{ fs}$
Requires precise decay length m’ment
Measuring the CKM Angles

- Interference between 2 (or more) amplitudes with differing phases. Rate asymmetries “expose” the interference terms (which contain the CPV angles)

\[A_f(t) = \frac{\Gamma(t) - \bar{\Gamma}(t)}{\Gamma(t) + \bar{\Gamma}(t)} = C_f \cos(\Delta mt) - S_f \sin(\Delta mt) \]

- Direct CPV Term
- Mixing induced CP Violation term

\[C_f = \frac{1 - |\lambda|^2}{1 + |\lambda|^2} \]
\[S_f = \frac{-2 \text{Im} \lambda}{1 + |\lambda|^2} \]
\[\lambda = \frac{q \bar{A}}{p A} \]

CPV \((\Gamma(t) \neq \bar{\Gamma}(t))\) occurs when \(\lambda \neq 1\)

- \(q/p\) is the phase of B mixing

\[\Delta m_d \propto |V_{td}^* V_{tb}|^2 \]

Value depends if there is one or more diagrams
- If \(|\bar{A}/A| \neq 1 \Rightarrow\) DCPV
- Weak phase flips sign under CP
- Strong phase invariant under CP
CKM Angles - $\sin(2\beta)$ in $B^0 \rightarrow J/\psi K_S$

$$A(t) = \sin(2\beta) \sin(\Delta mt)$$

$A_f(t) = \text{Im} \lambda \sin(\Delta mt)$

$|\lambda|=1 \rightarrow C_f = 0$

$$\lambda = \frac{q \bar{A}}{p A} = \left(\frac{V_{cs}^* V_{cb}}{V_{cs} V_{cb}} \right) \left(\frac{V_{tb}^* V_{td}^*}{V_{tb} V_{td}^*} \right) \left(\frac{V_{cd}^* V_{cs}}{V_{cd} V_{cs}} \right) = e^{-i2\beta}$$

$\text{Im}(\lambda) = \sin(2\beta)$

$\sin(2\beta)_{WA} = 0.675 \pm 0.026$
The State of Affairs

- $|V_{ub}/V_{cb}|$: Systematics limited, SM dominated
- $|V_{td}/V_{ts}|$: f_B errors dominant, SM+NP
- $\sin(2\beta)$: Exp. error dominant (SM + NP)
- Need:
 - Accurate measurement of γ with TREES only
 - Precise measurement of γ in LOOPS (SM+NP)
 - Precise measurement of α (SM + NP)
 - Reduce theory errors.

CKM Fitter

Pins down $(\rho, \eta)_{SM}$

Pins down $(\rho, \eta)_{SM+NP}$

Summer 2007
Model independent constraints on New Physics

Parameterize NP in B_s mixing as:

$$\Delta m_s = \Delta m_{s}^{SM} (1 + h_s e^{2i\sigma_s})$$

Z. Ligeti, FPCP07
arXiv.0706.0919

Δm_s(NP) \sim SM if
\sim(180±30)$^{\circ}$ relative phase
Model Dependent Constraints on NP from $b \rightarrow s\gamma$

Constraints on 2HDM, Type II

Experiment: $\mathcal{B}(b \rightarrow s\gamma) = (3.54 \pm 0.26) \times 10^{-4}$

Theory: $\mathcal{B}(b \rightarrow s\gamma) = (3.15 \pm 0.23) \times 10^{-4}$ (Misiak *et al* hep-ph/0609232)

M(H^+) > 295 GeV at 95% CL, for $\tan\beta \gtrsim 2$.

Best lower bound on M(H^+) from any other measurement
First Measurements of ϕ_s

Recent CDF and D0 measurements of CP Asymmetry in $B_s \rightarrow J/\psi \phi$

$-\phi_s = -2\beta_s$ in $[0.32, 2.82]$ at the 68% C.L.

Stronger constraints if $\Delta \Gamma_s$ is taken from theory (dominated by $b \rightarrow ccs$ tree diagrams, so ‘no’ NP)

$\phi_s = -2\beta_s$ in $[0.24, 1.36]$ or $[1.78, 2.90]$ @68%CL

$\tau_s = 1.52 \pm 0.06 \ (stat) \pm 0.01 \ (syst) \ ps$

$\Delta \Gamma_s = 0.19 \pm 0.07 \ (stat) \pm 0.02 \ (syst) \ ps^{-1}$

$\phi_s = 0.57^{+0.24}_{-0.30} \ (stat) \pm 0.07 \ (syst) \ rad$
Another mystery?

sin(2β) by TREE

\[A \propto V_{cb}^* V_{cs} \]

sin(2β) by PENGUIN

\[A \propto V_{tb}^* V_{ts} \approx V_{cb}^* V_{cs} \]

Should give same answer. Should perhaps even get larger sin(2β) from penguins…

\[\sin(2\beta^{\text{eff}}) = \sin(2\phi_1^{\text{eff}}) \]

Cheng et al., PRD 73, 014017 (2006)

\[\Delta \sin 2\beta \]
New Physics in Flavor
(a small sampling)

2. Left-right symmetric models (Nir, hep-ph/9911321)
 “Contributions compete with or even dominate over SM contributions to B_d and B_s mixing. This means that CP asymmetries into CP eigenstates could be substantially different from the SM prediction”

 “dramatic deviations from SM predictions for CP asymmetries in B decays are not unlikely”

 “Both the sign and magnitude of the decay leptons in $B \to K^* \ell^+ \ell^-$, carry sensitive information on new physics. Potential effects are on the order of 10%, compared to a entirely negligible SM asymmetry of $\sim 10^{-3}$”

 “If the geometry of space-time is noncommutative i.e. $[x^\mu, x^\nu] = i \theta^\mu\nu$, then CP violating effects may be manifest at low energy. For a scale ≤ 2 TeV there are comparable effects to the SM”

 Could find an inconsistency between α, β & γ and CKM determinations of (η, ρ) using mixing, V_{ub}/V_{cb}, and/or ε_K

7. Many papers on Extra Dimensions !!
Moving forward

- B factories have done a tremendous job on $\sin(2\beta)$
- Pioneered/implemented many methods for accessing α, γ
- Tevatron has delivered on Δm_s

- But… many of the critical measurements in $B_{(s)}$ decays still remain.
 - Precise measurements of α, γ (in both trees & loops when possible)
 - Measurement of B_s mixing phase, ϕ_s, (first m’ments from Tevatron!)
 - Measurement of $B_s \rightarrow \mu^+\mu^-$ and other rare decays
 - Full exploration of CPV in B_s sector
 - $B \rightarrow K*\ell\ell$ forward-backward asymmetry
 - …

- These important measurements are all stats deprived.

- Solutions:
 - B physics at a hadron machine
 - B factory at $\mathcal{L}\sim10^{36}$ cm$^{-2}$ s$^{-1}$

- Theoretical advances are also needed
 - FF’s for V_{ub}
 - Decay constants for $f_{B(s)}$
 - …
LHCb: B Physics at the LHC

- Large cross section
 - $\sim 5 \times 10^{11}$ bb/year.
- $L \sim 10^{32}$ cm$^{-2}$s$^{-1}$
 - prefer 1 int/Xing
 - CMS/Atlas $\sim 10^{34}$
- Harsh environment:
 - ~ 30 particles/B event in spectrometer

Detector Requirements
1) Precision vertexing
2) Excellent PID
3) Selective trigger
 (B/MinBias ~ 0.001)
4) Precision tracking / σ_p
5) Reconstruction of neutrals:
 π^0, η, γ
6) Muon ID
The LHCb Detector

Acceptance is from ~10-300 mrad
Vertex locator around the interaction region

Silicon strip detector with ~ 30 µm impact-parameter resolution

n⁺ in n, 300 µm R-φ strip geom 35-100 µm pitch
LHCb Tracking

Tracking system and dipole magnet (4 T-m) to measure angles and momenta

$\Delta p/p \sim 0.4\%$, mass resolution ~ 14 MeV (for $B_s \rightarrow D_s K$)
Two RICH detectors for charged hadron identification
LHCb Calorimeters

Calorimeter system to identify electrons, hadrons and neutrals
Important for the first level of the trigger
LHCb Muon System

Muon system to identify muons, also used in first level of trigger
LHCb trigger

<table>
<thead>
<tr>
<th>HLT rate</th>
<th>Event type</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 Hz</td>
<td>Exclusive B candidates</td>
<td>B (core program)</td>
</tr>
<tr>
<td>600 Hz</td>
<td>High mass di-muons</td>
<td>J/ψ, b→J/ψX</td>
</tr>
<tr>
<td>300 Hz</td>
<td>D* candidates</td>
<td>Charm (mixing & CPV)</td>
</tr>
<tr>
<td>900 Hz</td>
<td>Inclusive b (e.g. b→μ)</td>
<td>B (data mining)</td>
</tr>
</tbody>
</table>

Detector

- **L0**: high p_T (μ, e, γ, h) [hardware, 4μs]
- **HLT**: high IP, high p_T tracks [software]
 then full reconstruction of event
- **Storage** (event size ~ 50 kB)

Efficiency

The efficiency graph shows the efficiency for various channels with different colors indicating different categories. The channels are labeled with various physics processes, such as B candidates, high mass di-muons, D* candidates, and inclusive b (e.g. b→μ), each with corresponding efficiencies for L0, HLT, and L0×HLT.
Putting it all together

- Muon
- ECAL
- HCAL
- SPD
- RICH2
- IT/OT
- RICH1
- Magnet
- TT
- Velo
Tracking Performance

Vertex detector information is used in the trigger.

Proper time Resolution for $B_s \rightarrow D_s \pi$

$\sigma_t \sim 40$ fs

For CDF

~ 90 fs

Impact parameter resolution

$\delta IP = 14 \mu m + 35 \mu m / p_T$

B decay tracks

$\delta p(p)$
Hadron ID performance

• Critical for B physics: reduction of background & flavor tagging
 eg $B_s^0 \rightarrow D_s^- K^+ \rightarrow K^+ K^- \pi^- K^+$
 $B \rightarrow \pi \pi$, $K \pi$; $B_s \rightarrow KK$, πK
• Wide momentum range \rightarrow 2 RICHs
• $N_\pi \sim 7XN_K$ (PID critical)

CDF
$B \rightarrow hh$
Flavor Tagging

For CP Violation measurements it is critical to know the flavor of the b-hadron at production.

Can use information on the CP tag side, or from the other B.

<table>
<thead>
<tr>
<th>Method (For B_S)</th>
<th>μ^\pm</th>
<th>e^\pm</th>
<th>K^\pm_{same}</th>
<th>K^\pm_{opp}</th>
<th>Jet charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon D^2(%)$</td>
<td>1.5</td>
<td>0.7</td>
<td>3.1</td>
<td>2.5</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Expect $\varepsilon D^2 \sim 7.5\%$ for B_S & 4.3% for B_d
Now, some expected physics performance
B_s mixing – Amplitude & Phase

$\Delta m_s = 17.7 \pm 0.1 \text{ ps}^{-1}$ [CDF], … but still significant room for NP; need a tight constraint on phase of Δm_s.

Trees

\[\begin{align*}
\bar{d} & \quad V_{cb} \quad W^- \quad V_{cs}^* \quad \bar{d} \\
\bar{d} & \quad V_{cb} \quad W^- \quad V_{cs}^* \quad \bar{d} \\
\bar{d} & \quad V_{cb} \quad W^- \quad V_{cs}^* \quad \bar{d} \\
\end{align*} \]

Penguins

\[\begin{align*}
\bar{d} & \quad V_{th} \quad W^- \quad V_{ts}^* \quad \bar{d} \\
\bar{d} & \quad V_{th} \quad W^- \quad V_{ts}^* \quad \bar{d} \\
\bar{d} & \quad V_{th} \quad W^- \quad V_{ts}^* \quad \bar{d} \\
\end{align*} \]

$\Rightarrow \delta \beta_{\text{NP}}$
$\Rightarrow \delta \phi_{s\text{NP}}$

Same s-penguin diagram contributes to both. If $\delta \beta$ effect persists, we might expect a difference in ϕ_s. LHCb very well positioned to study this.
\(B_s \) Mixing Amplitude (\(\Delta m_s \))

- Example of an early physics measurement that is expected from LHCb:
 Measurement of \(B_s \) oscillations
 Use channel \(B_s \rightarrow D_s^{-} \pi^+ \)

- Plot made for 1 year of data
 \(\rightarrow 80,000 \) selected events
 for \(\Delta m_s = 20 \) ps\(^{-1}\)

- Next step: measure the *phase* of the oscillation,
 using \(B_s \rightarrow J/\psi \phi \) decays
 cleanly predicted in the SM:
 \(\phi_s = -0.04 \)
B_s mixing phase - $B_s \rightarrow J/\psi \phi$

- $B_s \rightarrow VV \rightarrow$ mixture of CP+ and CP-
- Angular analysis to separate them.

One year: 2 fb$^{-1}$

Yield for analysis: $\sim 130K$

Precision on ϕ_s: $\sigma(\phi_s) = 0.023$

From pure CP states: $B_s \rightarrow J/\psi \eta$, $\eta_c \phi$, $D_s D_s : \sigma(\phi_s) = 0.059$

Combined: $\sigma(\phi_s) = 0.021$

(UT fit value: -0.037)

$B_s \rightarrow \phi \phi$:

- $\sigma_{\phi_s} \sim 6^\circ$ for 2 fb$^{-1}$
- $\sim 2^\circ$ for 10 fb$^{-1}$

Equation:

$$A_{CP}(t) = \frac{\Gamma[\overline{B}_s(t) \rightarrow f] - \Gamma[B_s(t) \rightarrow f]}{\Gamma[\overline{B}_s(t) \rightarrow f] + \Gamma[B_s(t) \rightarrow f]}$$

$$A_{CP}(t) = \frac{\eta_f \sin \phi_s \sin(\Delta m_t) t}{\cosh(\Delta \Gamma_t t/2) - \eta_f \cos \phi_s \sinh(\Delta \Gamma_t t/2)}$$
Key Measurement - γ

CKMFitter – Moriond 2008

Constraints from Trees
Only (SM only)
$|V_{ub}/V_{cb}|$ & γ

Constraints from Loops
Only (SM + NP)
$\Delta m_d, \Delta m_s, \sin(2\beta), \varepsilon_K$

Precise measurement of γ needed

$B^\pm \rightarrow D^0 K^\pm$: Trees only, no mix $\rightarrow \gamma_{SM}$ ★★★★★
$B_s \rightarrow D_s^+ K^+: T, \text{Mix} \rightarrow (\gamma + 2\phi_s)_{SM+NP}$ ★★★★★
$B \rightarrow \pi\pi$, $B_s \rightarrow KK$: T, P & Mixing ★★★
B\(^\pm\) ~ Counting experiment (no mixing) TREES

γ Measurements

<table>
<thead>
<tr>
<th>B mode</th>
<th>D mode</th>
<th>Method</th>
<th>$\sigma(\gamma)$ 2 fb(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+ \rightarrow DK^+$</td>
<td>$K\pi + KK/\pi\pi + K3\pi$</td>
<td>ADS+GLW</td>
<td>5°–15°</td>
</tr>
<tr>
<td>$B^+ \rightarrow D^*K^+$</td>
<td>$K\pi$</td>
<td>ADS+GLW</td>
<td>Under study</td>
</tr>
<tr>
<td>$B^+ \rightarrow DK^+$</td>
<td>$K_S\pi\pi$</td>
<td>GGSZ</td>
<td>8°</td>
</tr>
<tr>
<td>$B^+ \rightarrow DK^+$</td>
<td>$KK\pi\pi$</td>
<td>ADS+4-body Dalitz</td>
<td>15°</td>
</tr>
<tr>
<td>$B^+ \rightarrow DK^+$</td>
<td>$K_S\pi\pi\pi$</td>
<td>ADS+4-body Dalitz</td>
<td>Under study</td>
</tr>
<tr>
<td>$B^0 \rightarrow DK^{*0}$</td>
<td>$K\pi + KK + \pi\pi$</td>
<td>ADS+GLW</td>
<td>7°–10°</td>
</tr>
<tr>
<td>$B^0 \rightarrow DK^{*0}$</td>
<td>$K_S\pi\pi$</td>
<td>Dalitz</td>
<td>Under study</td>
</tr>
<tr>
<td>$B_s \rightarrow D_sK$</td>
<td>$K^+K^-\pi^+$</td>
<td>tagged, A(t)</td>
<td>13°</td>
</tr>
</tbody>
</table>

Interference between direct decay and mixing+decay (4 time-dep rates)

Simultaneous fit to all $\sigma_\gamma \sim 4\text{–}5\text{°} (2 \text{ fb}^{-1})$
Bs → Ds K

- <Decay Length>
 - ~ 6 mm for D_s
 - ~ 11 mm for B_s

- Estimated branching fraction for full B_s decay: $(1.0 \pm 0.4) \times 10^{-5}$

- B_s decay time resolution: 39 fs

- Effective tag eff $\varepsilon D^2 \sim 9\%$

Observed decay times $B_s \rightarrow D_s K$

Expected event yields/2fb$^{-1}$ B/S

- $B_s \rightarrow D_s \pi$: 140k <0.5
- $B_s \rightarrow D_s K$: 6.2k <0.5

- $B_s \rightarrow D_s \pi$ is also a control channel: precise Δm_s & tagging dilution.

Sensitivity with 2 fb$^{-1}$

$$\sigma(\gamma) \sim 13^\circ$$
Constraints on New Physics from LHCb

Parameterize NP in Bs mixing as:

\[\Delta m_\text{s} = \Delta m_\text{s}^{\text{SM}} \left(1 + h_s e^{2i\sigma_s} \right) \]

Z. Ligeti, FPCP07
arXiv.0706.0919

NP can still be ~SM (or larger) if ~150-210° relative phase

If NP, expect \(h \sim (4\pi v/\Lambda_{\text{NP}})^2 \)

\(\Lambda_{\text{NP}} \sim 2 \text{ TeV for } h \sim 1 \)
\(\Lambda_{\text{NP}} \sim 7 \text{ TeV for } h < 0.1 \)

Tension with EW obs
\(\Lambda \sim \text{TeV expected} \)
NP is MFV

Very tight constraints on any theory/models which yield additional flavor changing interactions (highly restrictive!)
Additional constraints from \(B_d \) mixing
$B_s \rightarrow \mu\mu$: 70 events for 2 fb$^{-1}$ (SM)

Background:
- B to $\pi\pi$, πK, KK followed by mis-id. Addressed by RICH particle identification.
- Combinatorial: B to μ^+X, \bar{B} to μ^-X. Addressed by very good mass resolution: $18\text{ MeV}/c^2$

G. Kane et al, hep-ph/0310042

With $L = 2\text{ fb}^{-1}$

3σ observation if at SM value

Integrated Luminosity (fb$^{-1}$)
B_d \rightarrow K^\ast \mu\mu

Measure:
- Forward – Backward Asymmetry (FBA) as a function of the \(\mu\mu \) invariant mass (\(M_{\mu\mu}^2 \))
- Determine, \(s_0 \), the \(M_{\mu\mu}^2 \) for which FBA = 0.
- Sensitive to New Physics.

\[
\begin{array}{c}
\sigma(s_0) = 0.52 \\
\text{(For 10 fb}^{-1}, \text{expect 0.28)}
\end{array}
\]

FBA can be modified by NP

Coarse measurements beginning to emerge from B factories
Some of the key modes

LHCb sensitivities for 2 fb⁻¹ (~1 year)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Yield</th>
<th>B/S</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s \to D_s^{+} K^{+}$</td>
<td>5.4k</td>
<td>< 1.0</td>
<td>$\sigma(\gamma) \sim 14^\circ$</td>
</tr>
<tr>
<td>$B_s \to K^{+} K^{-}$</td>
<td>36k</td>
<td>0.46</td>
<td>$\sigma(\gamma) \sim 4^\circ$</td>
</tr>
<tr>
<td>$B_s \to D^0 (K\pi,\bar{K}K) K^{*0}$</td>
<td>3.4 k, 0.5 k, 0.6 k</td>
<td>< 0.06</td>
<td>$\sigma(\gamma) \sim 7^\circ - 10^\circ$</td>
</tr>
<tr>
<td>$B_d \to D^0 (K^-\pi^+,K^+ \pi^-) K^-$</td>
<td>28k, 0.5k</td>
<td><0.3, <1.7, <1.4</td>
<td>$\sigma(\gamma) \sim 5^\circ - 15^\circ$</td>
</tr>
<tr>
<td>$B^- \to D^0 (K^-\pi^+,\pi^-\pi^-) K^-$</td>
<td>4.3 k</td>
<td>0.6, 4.3</td>
<td>$\sigma(\gamma) \sim 8^\circ - 16^\circ$</td>
</tr>
<tr>
<td>$B^- \to D^0 (K^-\pi^+,\pi^-\pi^-) K^-$</td>
<td>1.5 - 5k</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel</th>
<th>Yield</th>
<th>B/S</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_d \to \pi^+ \pi^- \pi^0$</td>
<td>14k</td>
<td>< 0.8</td>
<td>$\sigma(\alpha) \sim 10^\circ$</td>
</tr>
<tr>
<td>$B \to \rho^+ \rho^-,\rho^+ \rho^-,\rho^- \rho^0$</td>
<td>9k, 2k, 1k</td>
<td>1, <5, <4</td>
<td></td>
</tr>
<tr>
<td>$B_d \to J/\psi(\mu\mu) K_S$</td>
<td>216k</td>
<td>0.8</td>
<td>$\sigma(\sin 2\beta) \sim 0.022$</td>
</tr>
<tr>
<td>$B_s \to D_s^{+} \pi^-$</td>
<td>80k</td>
<td>0.3</td>
<td>$\sigma(\Delta m_s) \sim 0.01 \text{ ps}^{-1}$</td>
</tr>
<tr>
<td>$B_s \to J/\psi(\mu\mu) \phi$</td>
<td>131k</td>
<td>0.12</td>
<td>$\sigma(\phi_s) \sim 1.3^\circ$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rare decays</th>
<th>Yield</th>
<th>B/S</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s \to \mu^+ \mu^-$</td>
<td>17</td>
<td>< 5.7</td>
<td>$\sigma(C_7^{\text{eff}}/C_9^{\text{eff}}) \sim 0.13$</td>
</tr>
<tr>
<td>$B_d \to K^{*0} \mu^+ \mu^-$</td>
<td>7.7 k</td>
<td>0.4</td>
<td>$\sigma(A_{CP}) \sim 0.01$</td>
</tr>
<tr>
<td>$B_d \to K^{*0} \gamma$</td>
<td>35k</td>
<td>< 0.7</td>
<td></td>
</tr>
<tr>
<td>$B_s \to \phi \gamma$</td>
<td>9.3 k</td>
<td>< 2.4</td>
<td></td>
</tr>
</tbody>
</table>

| charm | $D^{*+} \to D^0 (K^-\pi^+) \pi^+$ | 100 M | |

The 5 year CKM forecast

Constraints on the Unitarity Triangle that can be expected after ~ 5 years of LHCb data (~10 fb⁻¹)

scenario after the LHCb measurement: new physics?

- γ from Bₛ → Dₛ⁺K⁻, B → DK etc
- Angle α from B⁰ → π⁺π⁻π⁰
- φₛ measured to ± 0.01, i.e. precisely enough to see SM value and therefore any new physics enhancements
Experimental results in B physics from B factories have taken a front seat in the last ~7 years due to outstanding performance of PEP-II and KEK and the ingenuity of the collaborations.

CKM has thus far escaped ~unscathed (although several tantalizing differences)

But significant room for New Physics

To uncover this New Physics will require precision measurements in B decays which are now statistically limited

LHCb is ready and poised to carry the torch into the next decade:

High rates of B, B_s, B_c, Λ_b… (all species available!)

LHCb will either provide stringent constraints on New Physics OR discover New Physics (complementary role to direct observation)

LHCb is also considering a future upgrade, with the hope of reaching 100 fb\(^{-1}\).

Faster DAQ, displaced trigger at L0

More rad hard silicon (pixels, strixels, n-on-p, etc)

etc…