• The Standard Model
• The Plot
• Collecting Evidence
• A Suspect
 • SUSY (very little on that today)
• A Simple Observation
• Parity
• Extra Dimensions
The Standard Model in Words

- Matter is built of spin 1/2 particles that interact by exchanging 3 different kinds of spin 1 particles corresponding to 3 different (gauge) interactions.
- The matter fermions and the weak bosons have “mass”.
- There appear to be 3 generations of matter particles.
- The 4 different matter particles in each generation carry different combinations of quantized charges characterizing their couplings to the interaction bosons.
- Gravitation is presumably mediated by spin 2 gravitons.
- Gravitation is extremely weak for typical particle masses.
- There appear to be 3 macroscopic dimensions.
About the Standard Model

- It’s a theory of interactions:
 - Properties of interaction bosons in terms of couplings, propagations, masses are linked:
 - Measuring a few allows us to predict the rest, then measure and compare with expectation
 - Properties of fermions are inputs

- It’s remarkably successful:
 - Predictions verified to be correct at sometimes incredible levels of precision
 - After ~30 years, still no serious cracks

- But no information about the nature of particles
Many Fundamental Questions

• What exactly is spin? Or color? Or electric charge? Why are they quantified?
• Are there only 3 generations? If so, why?
• Why are there no neutral, colored fermions?
• What is mass? Why are particles so light?
• Is there a link between particle and nucleon masses?
• How does all of this reconcile with gravitation? How many space time dimensions are there really?
• …
The Plot
Vector Boson Scattering

- There is in fact one known problem with the standard model:
 - If we collide W’s and Z’s (not so easy...), the scattering cross-section grows with the center of mass energy, and gets out of control at about 1.7 TeV
- This is similar to “low” energy neutrino scattering:
 - If $q^2 << (M_W)^2$, looks like a “contact interaction”, and cross-section grows with center of mass energy
 - But when $q^2 \approx (M_W)^2$, W-boson propagation becomes visible, and “cures” this problem
One way to solve the VBS problem, is to introduce a massive, spinless particle (of mass < ~1 TeV)

- Couplings to W and Z are fixed, quantum numbers are known...
- to be those of the vacuum
- Its mass is unknown, and its couplings to the fermions are unknown.... well, maybe
 - Fermions can acquire mass by coupling to this Higgs boson, so their couplings could be proportional to their masses. This is called the “standard model Higgs”
Precision Measurements

- If so, we can say something about the standard model Higgs mass
- If the fermions get their mass from the Higgs, we know all couplings and can infer the Higgs mass from precision measurements
- Result is very sensitive to measured top quark, W boson masses
 - Really wants a “light” Higgs boson
Higgs Drawbacks

- In principle, with the addition of a Higgs boson around 150 GeV particle physics could be “complete”
 - Like Mendeleev’s table for chemistry

- But by itself, the Higgs is very unsatisfactory:
 - Why are the couplings to the fermions what they are?
 - Dumb luck (aka landscape)?
 - What is the link to gravity?
 - Why does the Higgs break the symmetry?
 - Why are there 3....?
The Plot Thickens
Higgs Mass

- Higgs, in fact, also acquires mass from coupling to W’s, fermions, and itself!
- These “mass terms” are quadratically divergent
- Drive mass to limit of validity of the theory
- So we expect the Higgs mass to be close to the scale where new physics comes in....
Collecting Evidence
DØ at the Tevatron

- Tevatron: 1.96 TeV center of mass proton-antiproton collider
 - Run I in early 90’s led to the discovery of the top quark
 - Run II since 2001 has led to lots of interesting results, but no Higgs seen yet
 - Main focus is the Higgs search now
ATLAS and the LHC

- 14 TeV proton - proton
- Start operations in 2008
 - Compared to Tevatron:
 - Production cross-sections increase by 1-2 orders of magnitude for ~100 GeV objects
 - 100x luminosity
 - Superior detectors
LHC Schedule

Sector 5-6: cooldown ongoing

Sector 4-5: thermal instability prevented ramping to more than 8.5 kA (12 kA needed for 7 TeV)
A Suspect
Supersymmetry

- Symmetry between bosons and fermions: for each boson/fermion, there is an associated fermion/boson

- Fermionic and bosonic loop corrections to the Higgs mass cancel each other: Higgs mass is naturally at the “electroweak scale” provided SUSY partners exist at that mass

- String theory wants SUSY, but not necessarily at the electroweak scale
Good SUSY, Bad SUSY

- SUSY has a number of attractive features
 - “Explanation” for low Higgs mass, and EWSB
 - Gauge coupling unification
 - Dark matter candidate (but R-parity is ad hoc)
 - No new interactions

- But answering those questions comes at a large cost
 - Many new particles, with masses and mixing angles
 - Need to explain why SUSY mass scale is so low (or high)
 - Do away with the mystery of spin?
A Simple Observation
Inside a generation, the more a fermion interacts, the heavier it is

(Of course, we don’t know that the τ-ν_τ lepton generation doesn’t really match up with the d-u quark generation)

Pattern suggests fermion masses might be related to a more complex mechanism

Indirect relation to interactions?

Higgs may then only be relevant for VV scattering, relaxing mass constraints
Spin & Mass

- Problem with mass is that it allows a particle to change helicity
 - And, of course, since parity is maximally violated in weak interactions, this “breaks the symmetry”
 - Deeper understanding of spin as useful to making progress as a Higgs observation

→ Scenario of restoration of parity might lead to understanding of fermion masses
 - No necessarily strict left-right...
Parity
Parity Restoration: Signals

- Primary signals are (right-handed) W', Z'

- Dilepton resonances offer clean signals, well-understood backgrounds
 - At LHC, some concern about extrapolation of calibration from Z to very high energies

- Electron/muon resolution improves/degrades with p_T

- tt decays visible (maybe)

- ν_R is presumably heavy, W' may only decay to quarks
 - If ν_R lighter than W'/Z', ν_R decays become important

- Note: many kinds of Z' - recent review by Langacker
Z’ Production and Decay

- Production from u, d quarks is dominant at LHC
- Couplings vary by model
- E.g. for LR symmetric models, $\kappa = g_R/g_L$ drives production cross-section (convolute with PDFs) and branching ratios
- Decays somewhat similar to Z (but almost no BR to light neutrinos, decays to top open up), plot assumes ν_R heavier

T. Rizzo, hep-ph/0610104

ATL-PHYS-PUB-2005-010
Z’ → ee

- Most promising channel:
 - At Z’ masses, energy resolution dominated by constant term
 - 10 GeV for 1.5 TeV electron
 - Could measure width!
 - Extend Tevatron reach as soon as understand data
 - Backgrounds very low!
 - Study currently being updated with best full simulation

- SSM Z’, ~100 fb⁻¹
- SSM Z’, ~1 fb⁻¹
Z’ → μμ: Early Potential

- CMS 1 TeV Z_{η} study
 - Narrower than SSM (7 vs 31 GeV), but dominated by detector anyway
 - Cross-section 2-3 times smaller than SSM
 - Note: statistics scaled down, so fluctuations “not to scale”

CMS TDR
“Early Alignment”
100 pb^{-1}

New ATLAS Result Soon
Z’ → μμ Reach

- 5σ discovery reach
- Systematics don’t change these results much
- 2-3 TeV with 1 fb⁻¹
- 3-4 TeV with 10 fb⁻¹
- Again, assumes no “exotic” decays
- Discovery reach about 700 GeV below 95% CL limit at highest masses
“Look Elsewhere” Effect

- If search is done by counting experiment in a shifting mass window, need to factor in “look elsewhere” effect
 - CDF does this

- Global fit to the DY spectrum is a better approach
 - Shape analysis more sensitive
 - No look elsewhere problem if single global fit
Spin Determination

- Look at angle between lepton and beam direction
- Spin 1 particles tend to emit leptons closer to beam
- Plot is potentially optimistic: sensitivity is in the forward region where lepton identification is not nearly as efficient or pure
Model Determination

- Angular distribution gives excellent handle on g_V, g_A for various fermions
- Charm may be possible
- This will come after an initial determination of branching ratios (obviously)
- Complementary information in determining nature of resonance
Z'/W' → jj

- In the dijet channel, the backgrounds are obviously much larger

- But not necessarily unmanageable: DØ published a Run 1 search for resonances in the dijet channel

(PRD Rapid Comm. {69}, 111101 (2004))
If ν_R is light, lepton and jets collimated → leptons embedded in merged jets

- If ν_R is lighter than $m(Z')/2$, decay channel opens up
- ν_R subsequently decays to lW_R^* (assuming W_R is heavier than ν_R), leading to signature with two leptons and 4 jets
- Or other combinations if $m(\nu_R') < m(\nu_R)$, for example more leptons
- Since ν_R is majorana, can get same-sign leptons!
$Z' \rightarrow \nu_R \bar{\nu}_R (2)$

- Backgrounds include $t\bar{t}$, ZZ, ... + jets, but also W_R!

Reconstruction of ν_R (ejj) and Z' (eejjjj) masses

Discovery Potential

$\text{ATLAS, } L_{\text{int}} = 300 \text{ fb}^{-1}$

$\text{m}(Z') \leq 2\text{m}(N_e)$

$\text{m}(N_e) = \text{m}(N_\mu) = \text{m}(N_\tau)$

2 isolated electrons + 4 jets

2 jets with EM activity
W’ Production

- W’ production rate not very dependent on couplings
- But interference with W important (and not in experimental studies)!
- Key in identifying W’ coupling helicity in fact
 (T. Rizzo, hep-ph/0704.0235)
- (This plot is for e+MET transverse mass, which may not be a signature)
\[W' \rightarrow \mu \nu_R \]

- **SSM W’**
 - “Standard” \(M_T \) plot
- **Discovery reach \(\sim 4.5 \) TeV with 10 fb\(^{-1}\)**
- **Similar reach with electrons**
 - Note very different resolution effects in electrons vs muons
- **Decay does not necessarily exist!**
W’ → tb

- ATLAS fast simulation study
 - Use of very high p_T b-tagging
 - B meson decays *outside* first pixel layer!
 - High p_T top (more later)
 - Overall, could already make a (BR) statement very early on

Note: This is for W_H from Little Higgs

ATL-PHYS-PUB-2006-003

30 fb$^{-1}$
• Require at least one of the W, Z to decay leptonically to suppress backgrounds

• Then use mass constraints to improve S/B further

• Cleanest channel is obviously when both decay leptonically (but BR only 1.4%)

• LR model study by ATLAS

• (Also a technicolor signature, probably at lower mass)
If allow one boson to decay hadronically, higher BR (4.6/15%) but higher backgrounds

Hadronically decaying boson has large boost, so jets are merged → rely on jet mass

W/Z + jets background not well known
Exotic Quarks

- In most cases, existence of a Z’ requires existence of new fermions to cancel anomalies
- Exotic leptons or quarks
- Quarks could be pair-produced, then decay
 - D → Zd, D → Wu
 - Then require one or both W/Z to decay leptonically
Extra Dimensions
Extra Dimensions

A promising approach to quantum gravity consists in adding extra space dimensions: string theory.

Additional space dimensions are hidden, presumably because they are compactified.

Radius of compactification usually assumed to be at the scale of gravity, i.e. 10^{18} GeV.

In the late 90’s people realized they may be much larger.
“ADD”

- Original “large extra dimension” scenario (developed by Arkani-Hamed, Dimopoulos and Dvali):
 - Standard model fields are confined to a 3+1 dimensional subspace (“brane”)
 - Gravity propagates in all dimensions
 - Gravity appears weak on the brane because only felt when graviton “goes through”

Drawing by K. Loureiro
ADD Signatures

- Edges of extra dimensions identified
 - Boundary conditions
 - Momentum along extra dimension is quantified
- Looks like mass to us
- Very small separations \rightarrow looks like continuum
- Called Kaluza-Klein tower

- Coupling to single graviton very weak, but there are *lots* of them!
- Large phase space \rightarrow observable cross-section
 - Impacts all processes (graviton couples to energy-momentum)
Consider processes that involve the bulk (i.e. gravitons)

- Translational invariance is broken
 - Momentum is not conserved ...
 - ... because graviton disappears in bulk right away

- Look for $p p \rightarrow$ jet + nothing (i.e. E_T), or deviations in high mass/angular behavior in standard model processes

- Graviton has spin 2!

- Limit size of ED at ~ 1 TeV
Warped Extra Dimensions

• “Simple” Randall-Sundrum model:
 • SM confined to a brane, and gravity propagating in an extra dimension
 • As opposed to the original ADD scenario, the metric in the extra dimension is “warped” by a factor $\exp(-2kr_c\phi)$
 • (Requires 2 branes)
Hierarchies

Physics on a curved gravitational background:

- Scales depend on position along extra dimensions

 - UV brane scale is $M_{Pl} = 2 \times 10^{18}$ GeV
 - IR brane scale is $M_{Pl} e^{-kL} \sim 1$ TeV if $kL \sim 30$
 - If were to localize Higgs on IR brane, naturally get EW scale ~ 1 TeV (from geometry!)
Flavor

- Interesting variation has fermions located along the extra dimension
 - Fermion masses generated by geometry
 - Heavier fermions are closer to IR brane, and gauge boson excitations as well
 - Gauge boson excitations expected to have masses in the 3-4 TeV range (bounds from precision measurements)
 - Flavor changing determined by overlap of fermion “wave function” in the ED
 - Nice suppression of FCNC etc.
Gauge Boson Excitations

- Excitations of the gauge bosons are very promising channels for discovery
- Couplings to light fermions are small
 - Small production cross-sections
- Large coupling to top, W_L, Z_L
 - Look for $t\bar{t}$, WW, ZZ
 resonances (that can be wide)

B. Lillie et al., JHEP 0709:074, 2007
New Experimental Phenomenology

- Possibility to produce heavy resonances decaying to top quarks, W and Z bosons
 - Heavy objects with momentum $>>$ mass
 - Decay products collimated
 - For leptonic W/Z decays, not a big issue since we measure isolated tracks very well
 - But hadronic decays lead to jets, which are intrinsically wide
Top Quark Decays

- Simulated decays:
 - $dR = \sqrt{(\Delta \eta^2 + \Delta \phi^2)}$
 - Typical jet radius ~ 0.5
 - LHC calorimeters have granularity 0.1×0.1 or better
- For top $p_T > \sim 200$ GeV
 - dR (qq from W) $< 2 R_{jet}$
 - dR (bW) $< 2 R_{jet}$
 - (No isolated lepton!)

![Graph 1: dR b-W vs top pT](image1)

![Graph 2: dR qq (from W) vs top pT](image2)
Jet Structure

- Decay hadrons reconstructed as a single jet
 - But even if it looks like a single jet, it originates from a massive particle decaying to 2/3 hard partons, not one
 - If I measured each of the partons in the jet perfectly, I would be able to:
 - Reconstruct the “originator’s” invariant mass
 - Reconstruct the direct daughter partons
- But
 - quarks hadronize -> cross-talk
 - my detector can’t resolve all individual hadrons
“YSplitter”

- kT jet algorithm is much better suited to understand jet substructure than cone:
 - Cone maximizes energy in an $\eta \times \phi$ cone
 - kT is a “nearest neighbor” clusterer

$$y_2 = \min \left(E_a^2, E_b^2 \right) \cdot \theta_{ab}^2 / p_T^{2(jet)}$$

$$Y \text{ scale } = \sqrt{p_T^{2(jet)} \cdot y_2}$$

- Can use the kT algorithm on jet constituents and get the y-scale at which one switches from 1 \rightarrow 2 (\rightarrow 3 etc.) jets
 - scale is related to mass of the decaying particle
Applied to high p_T WW scattering:

- k_T jet algorithm, with $R = 0.5$
- Cuts applied: $p_T(jet) > 300$ GeV,

What about top?
Z' → tt

ATLAS Preliminary

M(Z') = 2 TeV
M(Z') = 3 TeV

Jet pT (GeV)

Jet Mass (GeV)

Number of Jets

YScale 1-2 (GeV)

YScale 2-3 (GeV)

YScale 3-4 (GeV)
- All distributions drop off exponentially, as expected
- Look at correlations to separate signal & background
Correlations

- In principle, multivariate tool is the best choice
 - But then want to optimize for a particular signal
- Here, chose to take a more conservative approach:
 - 2-D cuts, get good S/B over large top “monojet” p_T range
Example Cuts

- Cuts in:
 - jet mass vs p_T
 - YScale 1-2 vs YScale 2-3
 - YScale 2-3 vs YScale 3-4
 - YScale 1-2 vs jet mass
 - YScale 2-3 vs jet mass
 - YScale 3-4 vs jet mass
- Optimized “by eye”
Result

![Efficiency Curve](image)

Efficiencies

<table>
<thead>
<tr>
<th>Jet p_T (GeV)</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Samples (%)</td>
<td>5.6</td>
<td>19</td>
<td>32</td>
<td>37</td>
<td>47</td>
<td>45</td>
<td>56</td>
<td>64</td>
<td>63</td>
<td>68</td>
<td>74</td>
</tr>
<tr>
<td>Background Samples (%)</td>
<td>0.1</td>
<td>0.5</td>
<td>1.3</td>
<td>2.5</td>
<td>4.2</td>
<td>4.7</td>
<td>7.1</td>
<td>7.4</td>
<td>9.8</td>
<td>12.8</td>
<td>10.2</td>
</tr>
</tbody>
</table>
So Much More....

- Many other interesting models/signatures
 - Technicolor
 - UED, 6DSM
 - Heavy top/bottom partners with charge 5/3, 2/3, -1/3
- Some interesting studies made at Les Houches
 - Proceedings out soon
- Of course, with real data it’s all a lot harder
Conclusions

- We have strong reason to believe something is on the horizon
 - Hopefully something more interesting than a Higgs boson
- Many possibilities beyond the Higgs
 - With SUSY we may not gain much knowledge
 - Other models may tell us more about the origin of particle properties
- But be patient... it’s probably not right around the corner (of course, the c.o.m. increase at LHC is spectacular)