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Antineutrino Detector Requirements

• Large, homogeneous detectors → sufficient statistics, minimize edge
effects

• Clean IBD signature, with good background separation → Gd-loaded
LS (8 MeV release and 30µs capture time)

• Well determined fiducial volume/mass and hydrogen density
• Low threshold (<1 MeV) to efficiently detect e+ at rest → reduce

single γ rate, good p.e. yield, Lattn, and uniformity
• Well defined neutron detection efficiency → γ-catcher, calibration of

energy scale, identical detectors, simulation
• Good energy resolution → energy scale, spectral distortion (want high

scintillation output, long Lattn, good photocathode coverage)
• Moderate size → enable swapping, manageable muon flux
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Antineutrino Detector Design

Three-Zone Structure:
I.   Target: 0.1% Gd-loaded liquid scintillator
II.  γ-catcher: liquid scintillator, 45cm
III. Buffer shielding: mineral oil, ~45cm

Diffuse reflector at ends. For 224 PMT’s on circumference:
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Antineutrino Target Mass

Sensitivity after 3 years.
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Three zone detector

cut cut

3-ZONE 2-ZONE

• 2 zones implies simpler design/construction, some cost reduction but
with increased risk to systematic error (neutron ε and Eν spectrum)
• 3 zones provides increased confidence in systematic error associated
with detection efficiency and fiducial volume, but smaller volume

n capture on Gd yields 8 MeV with 3-4 g’s

4 MeV cut can reduce the error by x2, but low energy γ rate
does not allow us to do so
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Fast neutron spectrum

Rates
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Rates (GEANT)

111       Gd contamination (Hz)

181818       other materials     (Hz)

888       PMT glass             (Hz)

444       Rock                      (Hz)

11424Muons                    (Hz)

3
270
140

13

35
760

LA

048He+9Li
2840012B
15210β emitters (6-10 MeV)
220Tagged fast neutron

3535Radioactivity         (Hz)
90930Neutrino signal rate

farDB

Rates are per 20 ton module per day, unless otherwise noted



8

Mechanical Design

• Gd-LS Target: 3.2m (Φ) x
3.2m (L) − ~20 tons

• LS γ-catcher: 4.1m (Φ) x
4.1m (L) − ~20 tons

• Mineral oil buffer: 5m (Φ)
x 5m (L) − ~40 tons
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Mechanics of the detector

Inner acrylic tank

PMT

Outer acrylic tank

Steel tank

Water

Dimensions            inner   outer   steel

Diameter (mm):      3200    4100    5000
Height (mm):          3200    4100    5000
Wall thickness (mm):  10       15      100
Top/bot. thick (mm):   15       15
Weight (ton):              0.9      1.4

Acrylic transparency

heeger
Cross-Out

heeger
Replacement Text
Vessel Structure



10

Finite Element Analysis for steel tank

Load condition:           tank structure filled with liquids
Constraint condition:   bottom annular surface was constrained

The max. stress:            108 MPa
The max. deformation:  2.8 mm

Unit:Pa Unit:mStress  result Deformation  result
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Detector Instrumentation

Monitoring Goals: - mechanical stability during filling, transport, and movement
    - liquid levels during filling
    - acrylic vessel positions

Laser reflection for in-situ
measurement of:

- attenuation length

- AV movement and positions
during transport

mass flow
volume flow
temperature
density

level sensors

tilt sensors

load sensors

LS sampling

CCD camera
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Filling of the Detector

Gd-LS

LS
oil

Possible mass flow rates of
1g/hr - 8000kg/hr with 0.1%
repeatability.

I.   Target: 0.1% Gd-loaded liquid scintillator
II.  Gamma catcher: liquid scintillator, 45cm
III. Buffer shielding: mineral oil, ~45cm

Three Liquids:

Mass Measurements: mass + volume flow
load sensors

Example: Coriolis Mass Flow Measurements

•Flowmeters – 0.02% repeatability

 Baseline = 0.2%
 Goal = 0.02%
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Note
filling of detectors in pairs from common underground storage tank to ensure identical target composition
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Liquid Scintillator

• Gd loading significantly reduces
background due to the short capture time
and high capture energy

• Require stable Gd-loaded liquid scintillator
with
– high light yield
– long attenuation length
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Gd-LS Optical Attenuation:
Stable ~700 days

• R&D effort:
- Gd (carboxylate ligands) in PC and dodecane
- all stable for a year
- att. Length > 15m
- promising new scintillator: LAB



15

Combustion Analysis
Gd-LS decomposition in O2:

LS: CxHy + (x + y/4).O2 → x. CO2 + y/2.H2O

Gd: 2.Gd +(3/2).O2 → Gd2O3

1. Potential of measuring C, H and Gd simultaneously in
good precision.

2. Samples were measured by certified, commercial
laboratory; achieved C/H measurements at 0.3%. This
precision can be improved further.

Determine H and Gd in LS
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Prompt Gamma Activation Analysis

1. See 2.2-MeV γfrom H; 0.18-
MeV and other γ’s from Gd
from thermal neutron
capture.

2. Samples were measured by
the Institute of Isotopes,
HAS; achieved Gd and H
measurement at 1%; the
precision needs to be
improved.

Determine H and Gd in LS
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Performance of Gd in
PC and LABLight Output Spectra

 Have produced ~1% Gd in LAB and PC. Will dilute to ~0.1% Gd in
Daya Bay experiment.
 Graph above demonstrates LAB’s lower optical absorption (longer
attenuation length). LAB has better chemical and ESH properties.
 Graph shows LAB and PC have very similar light output efficiency
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PMTs

• 224 8” PMTs in 7 rings of 32
• Low radioactivity glass
• Two candidates

– Hamamatsu R5912
– Electron Tubes 9354KB

• Magnetic shielding under investigation
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Electronics
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Electronics (Trigger)
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Calibration
• Load sensors, level sensors, thermometers,

flow meters, mass flow meters
• LED
• Radioactive sources: 68Ge (1.022 MeV), 60Co

(2.5 MeV), 252Cf
– 3-4 locations (with full z travel)

• Data (12B, neutrons, Michel electrons)
• Determine/maintain energy scale to 1%

throughout detector volume
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Calibration

heeger
Note
add graphics of automated calibration system on detector (see my slide)
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LED Calibration

Calibration Goal: PMT gains
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Performance

• 224 PMTs with 12% effective photocathode coverage
• ~100 p.e./MeV: 12.5%/√E
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Performance (2)
• 0.5 ton prototype at IHEP (currently unloaded LS)
• 45 8” R5912  PMTs with 14% effective photocathode

coverage
• ~240 p.e./MeV and 9%/√E

Linearity Energy Resolution
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Energy Cuts• CHOOZ = 0.8% absolute
• Baseline 0.2%
• Goal = 0.05% for 2% energy calibration
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One Possible Deployment and Commissioning Scenario
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Summary


