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Some antineutrino topics

e v — U transitions (Details are in MINOS-doc-1571.)
1. Measurement technique
2. Physics effects
3. Beam and detector effects

4. Prospects

e Constraining the v, flux from 7,, measurements

e Improving the understanding of the v beam
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v — UV measurement technique

Look for a deviation in relative rates of =~ and p* produced by beam v,

and 7,, in the far detector (FD) based on the measured rates in the near
detector (ND).

In other words, predict the observable number of u* in the FD based on
the observed numbers of 1~ in the FD and p* in the ND.

What physics eflects can change the relative amount of beam v, and 7, as
they go from FNAL to Soudan?
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Physics effects and v — v

1. If v are Majorana particles, then P(v — 7) oc m, /E, (< 10719 for
E]/'u ~ 1G€V)

2. if v are Dirac & Majorana particles, then
P(V — Usperile) ~ 3 x 1077 sin*(1.27TAm2L/E)

3. CPT implies P(v, — v,) = P(¥, — V,), but CPTV

does not necessarily imply P(v,, — v,) # P(v, — 7,).

4. Matter effects and/or CPV can change the relative v, and 7,, fluxes.
Limited to a few % at < 2 Gev (see figure)

Refs: Langacker & Wang, PRD58 093004; Kostelecky & Mewes, PRD69 016005
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Allowed range for P(v, — v.) — P(v, — 7.) at FD

2006/02/27 13.18

The difference in the probabil- 01, fa Z125 degrees

ity of v, — v, and v, — 3735 km

v, oscillations for 735 km base- a 0,5=1
line and an average density of Djw

3g/cm?® assuming 613 = 12.5°, 2

Am?2, = (0.0014,0.0033) eV? and N

0 = (0,360)°. The various su- 1

perimposed curves are the result Tz

of scanning Am3%; and the CP-

violating parameter o0 over the

stated ranges.
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Technique: Detector and beam effects

Technique: Predict number of observable ™ in FD (= n{) based on
observed number of p~ in FD (= ngpp) and pF in ND (= ng,).

Let Ng = true number of v, interactions in FD,ND (similarly for 7,),
then
NY = (ny —by)pn/eny  Where

e by = the expected number of observed background p~ at the ND,

e py = the purity of u~ selection at the ND, the purity is the fraction of

correctly tagged v, , and

e ¢y = the efficiency of u~ selection at the ND.
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Technique: Detector and beam effects (cont.)

Also assume that the
relative rates of v, and
v, at the two detectors
can be written as

Z/Ng = K x N§/N
where K
rection factor within
~10% of unity.

1S a cor-

Figure: Ratios wrt v,
flux and FD/ND ratio of

ratios with GNUMI V15
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Technique: Detector and beam effects (cont.)

e Purity p of u* selection differs at FD,ND. A MC-based correction
must be applied. See MINOS-doc-1571 for a proposal to use stopped u
decays to check the MC estimate.

o 1T selection efficiency e differs at FD,ND. This must also be corrected
using MC. Can the correction be checked with a cosmic data/MC

comparison”?

e By definition, background is a reconstructed p candidate that is not
produced by a beam v, or v,,. pu candidates from v, v,, V. or U,

interactions and cosmic p* are possible backgrounds.

Jeff Hartnell showed that high purity (py; > 95%) and low background
(< 1% relative) could be achieved in ND MC (next slide).
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After tighter DP ID and Fit Probability cuts
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Technique: Some other effects and comments

Other effects:

e Charm production and subsequent semileptonic can produce wrong

sign muons. This must be taken into account in the MC-estimated

purity.

e Different energy scales at ND and FD complicate the use of the ND
ratio to produce the F'D ratio.

Comments:

e All beam energies, not just LE-10, should be used for this

measurement.

e Rock muons should probably be used mainly because they can increase
the FD sample by ~70% (Ref:M.L.Marshak, MINOS-doc-1379-v1)
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Prospects for a v,, — vV, measurement

The deviation A in the expected u* rate at the FD is

ni — by
Aznfg—{KxExPx(nE—bF_)nlj_blj +bi§}
NERN

+ —
o F = x X g the efficiency double ratio, and
€ N

—~ -
o P=2% x ™ i5 the purity double ratio.
Pgr PN
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Prospects for a v, — v,, measurement (cont.)

Approximate uncertainty in A:

SA ~ \/nf + R2ng + (Rng)? x (6K + 0P + 6 E°)
Under these assumptions:
e No correlations between the terms in A,
e K~ P~ FE=l1,
e Background is negligible, and

e drop all terms multiplied by the far-to-near ratio,
(ng —bp)/(ny — by)-

I also assume that R = (n — bY;)/(ny — by) &~ 1/10 and ng /R ~ nif to

produce following figure:
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Three standard dev. limits in observed ng

+ +

vs expected ng (red is stat. only)
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Measuring v, — v,: Some conclusions

SA ~ \/nf + R2ng + (Rng)? x (6K” + 0P + 6E°)

e Statistical uncertainty in the number of observable y* in FD

dominates the ability to limit v, — 7, transitions.

e Systematic uncertainty associated with the ND/FD extrapolation (K)
needs to be kept at the < 10% level. It may be worthwhile to consider
an analysis that ignores the ND and uses MC to predict 7,,/v,, at the
FD (idea from P.Ochoa).

e Measurement of purity (p), efficiency (€) and background (b) from
data is desired, but may not be essential. ( Since p, € appear as double

ratios and b is probably negligible)

e Ultimately must develop methods to use v,, — 7, results to limit (or
measure!) parameters of models that predict v, — 7, transitions.
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Constraining the v, flux from v, measurements

Motivation: Beam v, are an irreducible and especially pernicious
background in the v, — v, appearance analysis.

NC CC v, Beamv., v, | From p.15 of MINOS-doc-1143
20.4 4.7 1.7 4.7 6.2 | by Mayly Sanchez

Milind Diwan suggested that a measurement of the 7, flux could be used
to constrain the v, flux because v, production is dominated by

put — et v, at low energy.

To this end, the relative fluxes at the center of the ND were studied with
GNUMI V15 as well as the number of CC interactions in Carrot ND MC

processed with R1.18.2. Reconstruction effects not yet investigated.

The tentative conclusion is that an O(100%) constraint on the v, flux at
the ND should be possible, see figure on following page (and at end of
presentation).



David E. Jaffe, BNL 15 28 Feb 2006

‘ v, CC interactions at ND, carrot MC, R1.18.2, not norm’ed to POT
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Method: Estimate v, from 7, K for 10 < E, < 20 GeV and extrapolate to

< 10GeV using MC.
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Summary

e An analysis method to search for v, — v, was presented. The
primary uncertainty is due to the statistics of the number of
observable FD p*. The main systematic uncertainty is due to
knowledge of the beam v,, to v, ratio. Details in MINOS-doc-1571.

e Approximately 15% of the low energy v,, CC rate at the ND is due to
v, from p* decay. It should be possible to estimate this contribution
to the v, CC rate using higher energy data and MC and thus

constrain low energy, beam v, flux.

e Measurement of the v flux should improve the knowledge of the v flux
(statement of the obvious?)

Thanks to M.Bishai, M.Dierckxsens, M.Diwan, J.Hartnell, A.Marino,
P.Ochoa, B.Viren.
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v, flux at ND from GNUMI V15

2006/02/23 13.28 - 2006/02/23 13.29
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v. lux at ND from GNUMI V15

2006/02/23 13.28 2006/02/23 13.29
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ND CC rates from “Official Beam Plots”
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