Final results on $K^+ \to \pi^+ \nu \bar{\nu}$ from BNL E949

David E. Jaffe

Physics Department
Sensitivity to New Physics

The $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ branching ratio can be precisely predicted in the SM (and most models) owing to knowledge of the transition matrix element from similar processes and minimal long-distance effects.

In the SM, $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (0.85 \pm 0.07) \times 10^{-10}$ (arXiv:0805.4119).

Ref: G.Isidori, arXiv:0801.3039, attributed to Frederico Mescia
Experimental method

Previous $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ results

<table>
<thead>
<tr>
<th>Region</th>
<th>“PNN2”</th>
<th>“PNN1”</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(\pi^+)$ MeV/c</td>
<td>[140,195]</td>
<td>[211,229]</td>
</tr>
<tr>
<td>Stopped K^+</td>
<td>1.7×10^{12}</td>
<td>7.7×10^{12}</td>
</tr>
<tr>
<td>Background events</td>
<td>1.22 ± 0.24</td>
<td>0.45 ± 0.06</td>
</tr>
<tr>
<td>Candidate events</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>$B(K^+ \rightarrow \pi^+ \nu \bar{\nu})$</td>
<td>$< 22 \times 10^{-10}$ (90% CL)</td>
<td>$(1.47^{+1.30}_{-0.89}) \times 10^{-10}$</td>
</tr>
</tbody>
</table>

Rate vs.

π^+ momentum in K^+ rest frame

![Graph showing rate vs. momentum](image)
E949 experimental method

- **Measure everything possible**
- \(\sim 700 \text{ MeV}/c \) \(K^+ \) beam
- Stop \(K^+ \) in scint. fiber target
- Wait at least 2 ns for \(K^+ \) decay (delayed coincidence)
- Measure \(\pi^+ \) momentum \(P \) in drift chamber
- Measure \(\pi^+ \) range \(R \) and energy \(E \) in target and range stack (RS)
- Stop \(\pi^+ \) in range stack
- Observe \(\pi^+ \rightarrow \mu^+ \rightarrow e^+ \) in RS
- Veto photons, charged tracks
- **New/upgraded detector elements compared to E787**
A BEAUTIFUL LIKENESS OF PETER.
HOW DO YOU DO IT?

SIMPLE! YOU TAKE A BIG ROCK,
THEN YOU CHIP AWAY EVERYTHING
THAT DOESN'T LOOK LIKE PETER,
E787 and E949 analysis strategy

- A priori identification of background sources.
- Suppress each background with at least two independent cuts.
- Measure background with data, if possible, by inverting cuts and measuring rejection taking any correlation into account.
- To avoid bias, set cuts using 1/3 of data, then measure backgrounds with remaining 2/3 sample.
- Verify background estimates by loosening cuts and comparing observed and predicted rates.
- “Blind analysis”. Don’t examine signal region until all backgrounds verified.
Backgrounds in the pnn2 region

Process	**Rate**
\(K^+ \to \pi^+ \nu \bar{\nu} \) | \(0.8 \times 10^{-10} \)
\(K^+ \to \pi^+ \pi^0 \) | \(2092000000.0 \times 10^{-10} \)
\(K^+ \to \pi^+ \pi^0 \gamma \) | \(2750000.0 \times 10^{-10} \)
\(K^+ \to \pi^+ \pi^- e^+ \nu \) | \(409000.0 \times 10^{-10} \)
\(K^+ \to \mu^+ \nu \) | \(6344000000.0 \times 10^{-10} \)
\(K^+ \to \mu^+ \nu \gamma \) | \(62000000.0 \times 10^{-10} \)
\(K^+ \to \mu^+ \pi^0 \nu \) | \(332000000.0 \times 10^{-10} \)
CEX | \(\sim 46000.0 \times 10^{-10} \)
Scattered \(\pi^+ \) beam | \(\sim 250000000.0 \times 10^{-10} \)

CEX \(\equiv (K^+ n \to K^0 X) \times (K^0 \to K_L^0) \times (K_L^0 \to \pi^+ \mu^- \nu) \)

\(K^+ n \to K^0 X \) rate is empirically determined.
Main pnn2 background: $K^+ \rightarrow \pi^+\pi^0$ -scatters

The main background below the $K^+ \rightarrow \pi^+\pi^0$ peak is due to $K\pi_2$ decays where the π^+ scatters in the target losing energy simultaneously obscuring the correlation with the π^0 direction.
Suppression of $K\pi_2$-scatter background

- Photon veto of $\pi^0 \rightarrow \gamma\gamma$
 Photon detection in beam region is important
- Identification of π^+ scattering in the target
 - kink in the pattern of target fibers
 - π^+ track that does not point back to the K^+ decay point
 - energy deposits inconsistent with an outgoing π^+
 - unexpected energy deposit in the fibers traversed by the K^+
E949 scintillating fiber target

‘Typical’ pattern in target fibers for $K^+ \to \pi^+\pi^0$ decay.
Identification of π^+ scattering

Kink in pattern of target fibers

Excess energy in kaon fibers ("CCDPUL")

David E. Jaffe (BNL)
Suppression of K_{π^2} scatter background

Black: Photon-tagged sample
Blue: After target cuts (except CCDPUL)
Red: After all target cuts

Black: π^+-scatter-tagged sample
Red: After photon veto cuts
Experimental method

Estimation of K_{π^2} scattering background

- K_{π^2} scattering background is suppressed by PV and target cuts.
- To estimate PV rejection, multiple π^+-scattering samples are prepared by inverting different combinations of target cuts.
- The “normalization” sample is estimated by inverting the PV cut, but the sample is contaminated with K_{π^2} scatters in the range stack (RS) and by $K^+ \rightarrow \pi^+\pi^0\gamma$.

After disentangling the processes:

<table>
<thead>
<tr>
<th>Process</th>
<th>Background events</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{π^2} TG-scatter</td>
<td>$0.619 \pm 0.150^{+0.067}_{-0.100}$</td>
</tr>
<tr>
<td>K_{π^2} RS-scatter</td>
<td>$0.030 \pm 0.005 \pm 0.004$</td>
</tr>
<tr>
<td>$K_{\pi^2\gamma}$</td>
<td>$0.076 \pm 0.007 \pm 0.006$</td>
</tr>
</tbody>
</table>
Experimental method

\[K^+ \rightarrow \pi^+\pi^-e^+\nu \ (K_{e4}) \] background

\[\begin{align*}
&K^+ \rightarrow \pi^+\pi^-e^+\nu \text{ can be a background if the } \pi^- \text{ and } e^+ \\
&\text{have very little kinetic energy and evade detection.}
\end{align*} \]

Figure: \(\pi^+ \) momentum \((P_\pi) \) vs. total kinetic energy of \(\pi^- \) and \(e^+ \) from simulated \(K^+ \rightarrow \pi^+\pi^-e^+\nu \) decays.

Signal region is

\[140 < P_\pi < 199 \text{ MeV}/c \]

Cannot make a purely data-based background estimate due to inability to isolate \(K_{e4} \) from the larger \(K_{\pi2} \)-scatter background.
Experimental method

\[K^+ \rightarrow \pi^+\pi^- e^+\nu \] background

Isolate \(K_{e4} \) sample using target pattern recognition, similar to \(K_{\pi2} \) scatter.

Estimate rejection power of target pattern recognition with simulated data supplemented by measured \(\pi^- \) energy deposition spectrum in scintillator.

![Graph showing energy deposition spectrum and pattern recognition](image)

David E. Jaffe (BNL)
Final E949 results
Sept 9-13, 2008
The branching ratio that corresponds to one event in the absence of background is the Single-Event Sensitivity (SES).

For the E787+E949 pnn1 analysis, SES = 0.63 × 10^{-10}.
Verification of background estimates

Relax PV and CCDPUL cuts to define 2 distinct regions PV_1 and CCD_1 immediately adjacent to the signal region. Define a third region PV_2 by further loosening of the PV cut. Compare the observed (N_{obs}) with the expected number (N_{exp}) of events in each region.

<table>
<thead>
<tr>
<th>Region</th>
<th>N_{exp}</th>
<th>N_{obs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCD_1</td>
<td>0.79$^{+0.46}_{-0.51}$</td>
<td>0</td>
</tr>
<tr>
<td>PV_1</td>
<td>9.09$^{+1.53}_{-1.32}$</td>
<td>3</td>
</tr>
<tr>
<td>PV_2</td>
<td>32.4$^{+12.3}_{-8.1}$</td>
<td>34</td>
</tr>
</tbody>
</table>

The probability to observe ≤ 3 events when 9.09$^{+1.53}_{-1.32}$ are expected is 2%. The probability of the observation in regions CCD_1 and PV_1 given the expectation is 5%; the expectation is [2%,14%] when the uncertainty in N_{exp} is taken into account.
Division of the signal region

- The background is not uniformly distributed in the signal region.
- Use the remaining rejection power of the photon veto, delayed coincidence, $\pi \rightarrow \mu \rightarrow e$ and kinematic cuts to divide the signal region into 9 cells with differing levels of signal acceptance (S_i) and background (B_i).
- Calculate $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ using S_i/B_i of any cells containing events using the likelihood ratio method.
Examining the signal region

The nine cells

<table>
<thead>
<tr>
<th>Bkgd</th>
<th>Events</th>
<th>S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.152</td>
<td>0</td>
<td>0.84</td>
</tr>
<tr>
<td>0.038</td>
<td>0</td>
<td>0.78</td>
</tr>
<tr>
<td>0.019</td>
<td>0</td>
<td>0.66</td>
</tr>
<tr>
<td>0.005</td>
<td>0</td>
<td>0.57</td>
</tr>
<tr>
<td>0.243</td>
<td>1</td>
<td>0.47</td>
</tr>
<tr>
<td>0.059</td>
<td>0</td>
<td>0.45</td>
</tr>
<tr>
<td>0.027</td>
<td>1</td>
<td>0.42</td>
</tr>
<tr>
<td>0.007</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>0.379</td>
<td>1</td>
<td>0.20</td>
</tr>
</tbody>
</table>

The probability of all 3 events to be due to background only is 0.037.

No momentum cut applied. Solid line represents signal region, dashed line shows tightened kinematic cuts. Gray points are simulated $K^+ \rightarrow \pi^+ \nu \bar{\nu}$.
Measured $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ for E949 & E787

$$\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$$

- The probability of all 7 events to be due to background only is 0.001.
- SM expectation: $\mathcal{B} = (0.85 \pm 0.07) \times 10^{-10}$
- The pnn1 analyses are 4.2 times more sensitive than the pnn2 analyses due to a combination of acceptance and kaon exposure.

E787(dashed) and E949(solid) signal regions shown. All cuts applied.
The future

What happens next?

- In an ill-considered decision of the Executive Branch of the US Government, E949 was cancelled in 2002 after receiving only 20% of the approved beam time.

- Experiment NA62 (formerly NA48/3) at CERN was approved in 2007 and is in preparation.

- NA62 proposes to observe $\approx 65 \ K^+ \rightarrow \pi^+ \nu \bar{\nu}$ per year with a background of ≈ 10 events using a 75 GeV/c beam. The use of kaon decay-in-flight to measure $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ has not been attempted before.

- There is a letter of intent for a stopped kaon decay experiment in Japan.

- “A few % measurement of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ appears feasible at Fermilab Project X or J-PARC.” - D. Bryman & L. Littenberg
In 25 years of research with BNL E787 and E949, the search for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decays went from a limit on the branching ratio of $< 1.4 \times 10^{-7}$ (90%CL) to a measurement of $(1.73^{+1.15}_{-1.05}) \times 10^{-10}$ (arXiv:0808.2459) that is twice as large as, but still consistent with, the Standard Model expectation of $(0.85 \pm 0.07) \times 10^{-10}$.

The techniques, philosophy and results of E949 and E787 have shown the way for experimental searches of rare decays.
This page is blank
Backgrounds in high momentum (pnn1) region

Mechanisms for the main backgrounds in the high momentum region

1. Mismeasurement of π^+ kinematics
2. Undetected photons from $\pi^0 \rightarrow \gamma \gamma$

3. $K^+ \rightarrow \mu^+\nu$ ($K_{\mu2}$)
 1. Mismeasurement of μ^+ kinematics
 2. Misidentification of μ^+ as π^+
Estimation of background rates with data

- **Apply cut2 & invert cut1**: Select B events
- **Invert cut2**: Select C+D events
 - & apply cut1: Select C events
- **Rejection of cut1** is $R = (C+D)/C$
- **Background estimate** = $B/(R-1)$
Example: Estimating $K^+ \rightarrow \pi^+\pi^0$ pnn1 background with data

Left: Kinematically selected $K^+ \rightarrow \pi^+\pi^0$ with photon veto applied. Photon veto: Typically 2-5 ns time windows and 0.2 - 3 MeV energy thresholds

Right: Select photons. Phase space cuts in P, R, E.
Photon veto in the beam region

Active Degrader (AD)
14cm diameter, 17cm long,
12 azimuthal segments
6.1 radiation lengths
$K^+ \rightarrow \pi^+\gamma\gamma$ is not a background

- Partial branching fraction for $140 < P_{\pi} < 200$ MeV/c is $\approx 1.1 \times 10^{-7}$.
- Photon veto rejection of $\pi^0 \rightarrow \gamma\gamma$ is $> 10^6$.
- Rate of $K^+ \rightarrow \pi^+\gamma\gamma$ background is $< 1.1 \times 10^{-13}$ without considerations of π^+ acceptance.