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What is the Basis for the VLBNO Experiment? 
• Neutrinos have been shown to have mass (small but non-zero)

• Neutrinos are born and die as lepton flavor eigenstates (νe, νµ, ντ)
but they propagate through space as mass eigenstates (ν1, ν2, ν3)

• The quantum mechanical superposition of flavor amplitudes in propagating 
neutrinos gives rise to complex flavor oscillations among the  lepton 
flavors as the proper time evolves in flight

• Also, there is a likelihood that neutrino oscillations will exhibit
CP-Violation, possibly of large magnitude compared to the quark sector

• A set of six independent parameters (θ12, θ13, θ23, ∆m12
2, ∆m32

2, δ), plus
the ‘matter effect’) completely describes the neutrino flavor oscillations

• We believe that the experimental concept developed at BNL, the Very Long 
Baseline Neutrino Oscillations (VLBNO) experiment, utilizing the detection
of quasi-elastic neutrino-nucleon scattering, will prove to be the cost-
effective optimum for improving measurement of all the neutrino
oscillation experimental parameters

Unmeasured!



Current Neutrino Mixing Picture

• neutrino mass eigenstates ν1 / ν2 / ν3
are different from production and 
interaction states, νe / νµ / ντ ⇔
‘neutrino mixing’

• large mixings are seen except for Ue3
(ν3 content of νe)

• there is at the present time, no 
information on Ue3

• there is a sign ambiguity in the  
ordering of the neutrino masses

• there is no knowledge of phases in 
the mixing

νe νµ ντ

Neutrino Flavor
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Physics Case for the VLBNO Experiment
• All parameters of neutrino oscillations can be measured in one experiment

- every one of the oscillation parameters is important to particle physics 
- the oscillation parameters contribute to important cosmology questions
- a νe appearance experiment is required to determine all the parameters
- a broadband Super Neutrino Beam at very long distances combined with the

ability to identify quasi-elastic neutrino scattering in the detector is key
- the Very Long Baseline Neutrino Oscillation (VLBNO) Exp. is the best method

• The massive VLBNO detector can provide additional forefront physics
- a powerful next-generation Nucleon Decay search
- supernova, atmospheric and geo-neutrino neutrino investigations
- a deep underground detector in the prospective NSF DUSEL is ideal for VLBNO

• The CP-violation parameter δCP is the most difficult number to determine
- matter effects interact with CP-violation effects to produce intrinsic ambiguities
- the CP-violation phase δCP has distinct effects over the full 360º range
- systematic errors will be minimized using a single detector in a broadband beam
- the VLBNO detector can be staged in ~100KT modules as the scientific

program develops
- antineutrino running offers a complementary way to demonstrate CP-violation

and may be pursued at a later stage of VLBNO if demanded by the physics
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Questions About the VLBNO Experiment
Won’t the Hyper-K + 4MW J-PARC beam complete all the measurements?

- no, the 295km T2K baseline is too short for the solar term and matter effects
- the T2K neutrino beam requires at least one other big experiment, plus long 

antineutrino running, to determine δCP without ambiguities

Isn’t VLBNO much more expensive than other approaches?
- the VLBNO cost is comparable to or lower than other less complete methods
- the VLBNO detector can be made in ~100kTon steps, phased over time
- VLBNO plans to share the large Nucleon Decay Detector in the DUSEL

What about the background from π0 inelastic events in VLBNO?
- sophisticated Monte Carlo simulations with state-of-the-art Super-K pattern

recognition + maximum likelihood methods have greatly mitigated this issue

Why not determine CP-violation with antineutrino running?
- antineutrino measurements will require of order 10 Snowmass years of running
- some antineutrino running may be of value to a long-running VLBNO experiment

Is BNL a unique source for a wide-band ν beam for VLBNO at DUSEL?
- BNL or Fermilab could be a satisfactory source for a wide-band beam to DUSEL
- both labs have produced credible conceptual designs for a 1-2 MW source
- the baselines for these labs are different but either could work for VLBNO 



VLBNO Program Strategy at DUSEL 
Educate and  promulgate the VLBNO method in the HEP community

- the power of a single beam and a single detector is gradually being appreciated
- the ability to distinguish quasi-elastic events from background is now in place

(the pattern recognition work of Chiaki Yanigasawa is critical to this point)
- the magnitude of sin2(2θ13) will be bounded or measured in the next few years

by T2K plus reactor experiments, showing whether CP-violation can be 
measured by any super neutrino beam experiment, ie., θ13 > ~2-3 degrees

- even if sin2(2θ13) < 0.01, the VLBNO experiment remains the most cost-effective
way to measure the other neutrino oscillation parameters to good precision

- the narrow-band, off-axis method requires multiple detectors plus long 
antineutrino running to achieve a complete measurement of all the oscillation 
parameters to determine δCP without ambiguities (requires θ13 > ~2-3 degrees)

Promote a Super Neutrino Beam source from BNL or Fermilab
- DUSEL site candidates presently include both Homestake and Henderson 
- in consequence, the very long baselines needed by VLBNO could be realized 

from BNL or Fermilab
- Europe and Japan are not geographically positioned to perform a VLBNO exp.

(Japanese physicists are now thinking about a beam to Korea from Tokai)
- the U.S. particle physics program wins with either BNL or Fermilab as a source
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Electron Neutrino Appearance by Oscillation in Vacuum 
The equation for oscillationa of νµ → νe neutrinos in vacuum is given by:

P(νµ → νe ) = sin2(θ23) sin2(2θ13) sin2(∆m2
31 L/4Eν) ‘Term 1’

+ ½ sin(2θ12) sin(2θ13) sin(2θ23) cos(θ13) x
sin(∆m2

21 L/2Eν) x [ sin(δCP) sin2(∆m2
31 L/4Eν) ‘Term 2’

+ cos(δCP) sin(∆m2
31 L/4Eν) cos(∆m2

31 L/4Eν) ]

+ sin2(2θ12) cos2(θ13) cos2(θ23) sin2(∆m2
21 L/4Eν) ‘Term 3’

+ matter effects + smaller terms

∆m2
31 ≡ m2

3 - m2
1 = ∆m2

32 + ∆m2
21 ~ ∆m2

32

What do we learn by contemplating this long algebraic expression?
- simple inspection won’t reveal all the many experimental implications
- detailed calculations are needed to clarify the important experimental issues
- key oscillation parameters still to be determined are shown in red
- the known oscillation distance scales in green are exploited by VLBNO

a W. Marciano, Nuclear Physics B (Proc. Suppl.) 138, (2005) 370-375



 

 

Super Neutrino Beam to DUSEL Candidate Sites

BNL

Henderson
2770 / ~1500 km
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The U.S. DUSEL sites enjoy a natural 
geographical advantage not present in 

other potential world sites

Homestake
2540 / ~1300 km

FNAL
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Electron Neutrino Appearance With Matter Effects 
The oscillation for νµ → νe , including the matter effect, is given approximately 
bya:

P(νµ → νe ) ≅ sin2(θ23) sin2(2θ13) sin2((A-1)∆)/(A-1)2

+ α 8 JCP sin(∆) sin(A∆) sin((1- A)∆) / (A (1- A))
+ α 8 ICP cos(∆) sin(A∆) sin((1- A)∆) / (A(1- A))
+ α2 cos2(θ23) sin2(2θ12) sin2(A∆) / A2

JCP = sin(δCP) cos(θ13) sin(2θ12) sin(2θ13) sin(2θ13) / 8 
ICP = cos(δCP) cos(θ13) sin(2θ12) sin(2θ13) sin(2θ13) / 8
α = ∆m2

21  / ∆m2
31 ;  ∆ = ∆m2

31 L/4Eν ; A = 2VEν / ∆m2
31 ;  ∆m2

31 ≡ m2
3 - m2

1
V = √2GFne ;  ne is density of electrons along the path

This expression separates terms by the the following:
- the first three terms show the effect of sin2(2θ13)
- the second and third terms show the effects of CP symmetry
- the JCP term changes sign when calculating anti-neutrinos, νµ → νe
- matter effects come into all terms via the ‘A’ factors in blue

a Barger et al.,Phys. Rev. D63: 113011 (2001); M. Freund, Phys. Rev. D64: 053003 (2001); Huber 
et al., Nucl. Phys. B645, 3 (2002); Barger et al. Phys. Rev. D65: 073023 (2002)



Electron Neutrino Appearance by Oscillation in Vacuum 

νµ −> νe  Vacuum Oscillations - VLBNO
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Electron Neutrino Appearance by Oscillation in Vacuum 
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νµ −> νe  Vacuum Oscill. - FNAL to Homestake
30 GeV Primary Protons
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Sensitivity to Matter Effect 

νµ −> νe Matter Effects - VLBNO
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Sensitivity to Matter Effect 

νµ −> νe Matter Effects - FNAL to Homestake
30 GeV Primary Protons
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Electron Neutrino Appearance – CP Phase Sensitivity
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νµ −> νe  CP Phase Effects - VLBNO
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Electron Neutrino Appearance – CP Phase Sensitivity
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νµ −> νe CP Phase Effects - FNAL to Homestake
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νµ Flux vs Eν at Constant Target Power
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Comparison of Future Neutrino Oscillations Exps. 
Parameter T2K     T2K2        Reactor       Noνa     Noνa2 VLBNO.

∆m32
2 ± 4 % ± 4 %             - ± 2 % ± 2 % ± 1 %

sin2(2θ23) ±1.0 % ± 0.4 % - ± 0.4 % ± 0.2 % ± 0.5 %
sin2(2θ13) a >0.01     >0.01          >0.01       >0.01      >0.01         >0.01
∆m21

2 sin(2θ12) b - - - - - 12 %
sign of (∆m32

2) c - - - possible     yes             yes
measure δCP 

d - ~20° - - ~20° ±13°
N-decay gain x1        x20               - - - x8
Detector (Ktons) 50       1000              20             30        30+50    400      
Beam Power (MW) 0.74       4.0           14000         0.4           2.0              1.5
Baseline (km) 295 e 295 e 1           810 e 810 e >1300
Detector Cost ($M) exists  ~1000        ~20           165        +200            400
Beam Cost ($M) exists      500          exists          50         1000        400
Ops. Cost ($M/10 yrs)  500         700             50           500          600        150/500 f
a detection of νµ → νe , upper limit on or determination of sin2(2θ13)
b detection of νµ → νe appearance, even if sin2(2θ13) = 0; determine θ23 angle ambiguity
c detection of the matter enhancement effect over the entire δCP angle range
d measure the CP-violation phase δCP in the lepton sector; Noνa2 depends on T2K2 
e beam is ‘off-axis’ from 0-degree target direction; f with/without RHIC operations at BNL

Both results needed to
resolve ambiguities!

Best Bets
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Conclusions 

• Neutrino Oscillation parameters can be completely determined within
the next two decades

• The most effective method is the VLBNO + Wideband Super Beam

• A Megaton-class Water Cerenkov Detector can do this experiment
(perhaps built in modules and staged)

• Either BNL or Fermilab could be the source of an effective ν beam

• Combining VLBNO with the Nucleon Decay Search in the NSF DUSEL
yields the best science and the most cost effective plan for the U.S.

T. Kirk 
February 9, 2006
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Backup 
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What is the Potential Competition?
• The Noνa Experiment from Fermilab to Ash River, Minnesota

- Noνa Proposal March 2005, J. Cooper and G.J. Feldman, Co-spokespersons 
- a newly proposed, 30KT νe detector at 810 km from Fermilab, a small near

detector and a new, off-axis νµ-beam using the existing NuMI decay pipe 
- the 1st phase experiment is designed to detect sin2(2θ13) > 0.01
- a 2nd phase Noνa invokes anti-neutrino running + accelerator improvements

to determine the neutrino mass-ordering with some sensitivity to CP-violation
- a 2MW FNAL Proton Driver plus a 2nd new 50 KT detector may be needed

to measure the CP-violation parameter δCP in a possible 3rd phase of Noνa 

• The T2K Experiment from J-PARC Tokai to Super Kamiokande
- a νe appearance experiment to search for sin2(2θ13) > 0.006 in Super Kamiokande
- off-axis νµ-beam now under construction at KEK Laboratory at Tokai, Japan

will travel 295 km to the existing Super Kamiokande detector
- a future phase contemplates a 4MW beam + 1MT Hyper Kamiokande Detector

• The ICARUS-CNGS Experiment from CERN to Gran Sasso
- a future LAr detector scaled up from 600 Tons to 3000 Tons, 760 km from CERN
- the focus is on detection of νµ to ντ/ νe oscillations in the LAr drift chamber
- no claims are made for sensitivity to the mass ordering or δCP 



Electron Neutrino Appearance by Oscillation in Vacuum 

νµ −> νe  Vacuum Oscillations - Noνa
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Sensitivity to Matter Effect 
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νµ −> νe Matter Effects - Noνa
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Electron Neutrino Appearance – CP Phase Sensitivity
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νµ −> νe  CP Phase Effects - Noνa
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Electron Neutrino Appearance by Oscillation in Vacuum 

νµ −> νe  Vacuum Oscillations - T2K Exp.
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Sensitivity to Matter Effect 
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νµ −> νe Matter Effects - T2K Exp.
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2540 km
Homestake

BNL
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νµ DISAPPEARANCE
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• neutrino oscillations result from
the factor sin2(∆m32

2 L / 4E)
modulating the ν flux for each
flavor (here νµ disappearance)

• the oscillation period is directly
proportional to distance and 
inversely proportional to energy

• with a very long baseline actual 
oscillations are seen in the
data as a function of energy

• the multiple-node structure of the 
very long baseline allows the 
∆m32

2 to be precisely measured 
by a wavelength rather than an
amplitude (reducing systematic 
errors)

Very Long Baseline Neutrino Experiment



1-2 MW Super Neutrino Beam at AGS
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• BNL completed October 8, 2004, a Conceptual Design to support a
new proposal to DOE to upgrade the AGS to 1-2 MW target power
and construct the wide-band Super Neutrino Beam as listed in the
DOE’s “Facilities for the Future of Science” plan of November 2003



3-D Super Neutrino Beam Perspective
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νe Appearance Measurements S/B outlook 
August 2003

Too optimistic?

• a direct measurement of the
appearance of νµ → νe is important;
the VLB method competes well with
any proposed super beam concept

• for values > 0.01, a measurement
of sin22θ13 can be made (the
current experimental limit is 0.12)

• for most of the possible range of
sin22θ13, a good measurement of 
θ13 and the CP-violation parameter
δCP can be made by the VLB 
experimental method
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Electron Neutrino Appearance by Oscillation in Vacuum 

νµ −> νe  Vacuum Oscillations - VLBNO

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-2.30 0.00 2.30

Ln(En)

Pr
ob

ab
ili

ty

Term 1 - 'Atmospheric'
Term 2 - 'CP Effects'
Term 3 - 'Solar'
Total Vacuum Oscillations
Approximate Matter Effect

0.1 1.0 10
Eν (GeV)

0.2 0.5 2 5

Fermi 
Momentum 

Regime

∆m2
21 = 0.000080 eV2

∆m2
23 = 0.0025 eV2

sin2 2θ12 = 0.84
sin2 2θ23 = 0.95

ρEarth = 3.4 gm/cm3

Even if sin2 2θ13 = 0,
The Solar Term is still measurable

L = 2540 km – BNL to Homestake


