
This site.

BV

[2014-03-02 Sun 15:02]

This web site has evolved over time. It is currently written with Emacs

org-mode. It's Org source is exported with OrgOnPy and Pelican. This

topic contains notes on how this is done.

1 Generalities

I use Emacs for producing pretty much all of my information "output".

Except for Email (and IRC), I use Org mode to manage pretty much all my

text-based (non-code) output. The main content that this web site exposes

are "topics" which are formal(ish) notes (like this one) which I produce

to remind myself what I did and for the sake of anyone else that may be

interested. I will sometimes revise topics after their initial "publication".

1.1 History

This site went through many iterations. Below we go through them in reverse

chronological order.

2 Emacs and Org

My Emacs con�g is online. The Org initialization adds to the org-capture-templates

list so I can start a "capture" of a topic with C-c c b or revisit an existing

topic with C-c c B.

Because a topic may include multiple �les, I have this start a sub-

directory for each topic under my topics storage area (~/org-pub/topics).

Each new topic is created using a template which will cause Org to

prompt for various items used later including title, subtitle, category, tags

(note, not same as Org headline tags) as well as automatically �ll some things

1

//orgmode.org
https://github.com/brettviren/orgonpy
http://blog.getpelican.com/
https://github.com/brettviren/dot-emacs
https://github.com/brettviren/dot-emacs/blob/master/init-org.el
http://orgmode.org/manual/Capture.html
https://github.com/brettviren/org-pub/blob/master/templates/topic-start.template


like the date stamp (interpreted as a creation date). It also sets a SETUPFILE

which contains some minimal, global Org setup.

During authoring I can get a preview of how things look by doing a local

export (eg, C-c C-e l p for PDF, C-c C-e h h for HTML). This export is

not what eventually turns into the web page.

3 OrgOnPy

Unfortunately, I have never been able to fully grok Elisp and Python is my

preferred scripting language. So that I may process content in Org in non-

trivial ways I have developed OrgOnPy. It works by running some Elisp

which I did manage to write with a lot of help from the Org mailing list

to get the Org document as an org-element tree. It then breaks some

of the circular references that exist in that tree before using Emacs's json

module to convert it to JSON. OrgOnPy provides an org-element-like tree

representation which can then be used to provide Python objects which are

somewhat reminiscent of their Elisp counterparts.

4 Pelican

Pelican is a static site generator. It is well designed with fairly good layering

and a plugin system. HTML is generated from two paths: the overall struc-

ture of the pages is determined by Jinja templates driven by metadata while

the "payload" content is directly converted from the content source �les.

It is the job of the "reader" layer to provide metadata and HTML content.

The "reader" is an explicit layer in the Pelican design and it comes with

readers that support Markdown, rST and AsciiDoc. One may also provide

the "reader" as a plugin which is what OrgOnPy does to add support for

source �les in Org markup. The OrgOnPy Pelican reader is heavily inspired

by org_reader which is part of the Pelican plugin collection. OrgOnPy also

provides a modi�ed version of the extract_toc plugin also from the Pelican

plugin collection.

Pelican has a number of "themes" which provide for HTML structure and

CSS styling. For the most part a theme is de�ned at a layer boundary so

that most themes can be interchanged without changes to the source content

�les. I made a a survey of Pelican themes ultimately settling on elegant as

being closest in structure and functionality to what I wanted. Inevitably I

wanted to tweak so I have lightly forked elegant.

2

https://github.com/brettviren/orgonpy
https://github.com/brettviren/orgonpy/tree/master/pelican-plugin/orgonpy
https://github.com/getpelican/pelican-plugins/tree/master/org_reader
https://github.com/brettviren/orgonpy/tree/master/pelican-plugin/extract_toc
./pelican-themes.org
https://github.com/talha131/pelican-elegant/
https://github.com/brettviren/org-pub/tree/master/pelican/site/themes/elegant


4.1 Machinations

Create an environment for building the web site

$ virtualenv venv

$ source venv/bin/activate

$ pip install pelican beautifulsoup4

Build the site

$ cd ~/org-pub/pelican/site

$ pelican

$ (cd output && python -m pelican.server)

Content is held in site/content/ and exists as either immediate �les or

relative symlinks to sub-directories of topics/.

That build locally. Deployment is done with the help of the Fabric �le

and goes like:

$ pip install fabric

$

5 Links

There are other ways to use Org to make web pages. Here are some I've

looked at.

� http://www.seas.upenn.edu/~heqin/academic/sitecreation.html

� http://doc.norang.ca/org-mode.html

� http://www.nicolas-petton.fr/blog/blogging-with-org-mode.html

� http://stevenbagley.net/blog/blog-with-emacs-org-mode.html

� http://kerunix.com/blog-using-orgmode-and-pelican.html

� http://steckerhalter.co.vu/posts/blogging-with-org-mode.html

� http://justinlilly.com/emacs/orgmode_static_site_generator.

html

3

http://www.seas.upenn.edu/~heqin/academic/sitecreation.html
http://doc.norang.ca/org-mode.html
http://www.nicolas-petton.fr/blog/blogging-with-org-mode.html
http://stevenbagley.net/blog/blog-with-emacs-org-mode.html
http://kerunix.com/blog-using-orgmode-and-pelican.html
http://steckerhalter.co.vu/posts/blogging-with-org-mode.html
http://justinlilly.com/emacs/orgmode_static_site_generator.html
http://justinlilly.com/emacs/orgmode_static_site_generator.html

	Generalities
	History

	Emacs and Org
	OrgOnPy
	Pelican
	Machinations

	Links

