
Building ROOT 6 for Nix

BV

January 23, 2016

Contents

1 Introduction and Overview 1

1.1 Other ROOT Packaging . 2
1.1.1 Modular builds . 2
1.1.2 Monolithic builds . 2

2 Initial build notes 3

2.1 Starting out . 3
2.2 Getting the source . 4
2.3 Initial CMake'ing . 5
2.4 Specifying �rst dependency: ZLib 5
2.5 More dependencies . 6
2.6 Final version . 6
2.7 ROOT Build problems . 6

1 Introduction and Overview

There is a ROOT5 Nix package but it has some problems:

� it does not actually build (fails to �nd X11)

� it does not not build many of the features needed (eg, databases
Python, �tw3, PNG/JPEG)

� it does not use CMake despite that being the obvious intent

� it produces a monolithic output

� it's not ROOT 6

The goal here is to write a Nix package that �xes these issues while
learning what are nixpkgs "best practices".

1

1.1 Other ROOT Packaging

1.1.1 Modular builds

ROOT itself is designed with a high degree of modularity both in terms of
compile-time and run-time variants as well as providing an explicit plug-in
system. This modularity can be preserved to give the end-user �exibility in
which parts of ROOT to install, and more importantly, what dependencies
they must be satis�ed.

ROOT comes with support for building Debian and Red Hat packages,
(Christian Holm Christensen). The same system builds packages for both
distributions and the results are various modular packages relying on the
distro's native dependency resolution system. The packaging system lives in
the ROOT source under the build/package/.

It is desired that Nix packaging extend this existing packaging system or
at the very least embrace its strategy.

1.1.2 Monolithic builds

It's typical for individuals, experiments or collectives to build ROOT from
source tailored to what they need. Instead of the modular approach of the
built-in packaging they simply target the necessary sub-set of features and
call the whole thing "ROOT". This means one person's "ROOT" is not
another person's, even if it's the same version.

This is �nd unless these variants are to be somehow managed together,
such as in a HEP-wide packaging system. Going this route requires iden-
ti�ers (Fermilab calls them "quali�ers") to be invented. Since ROOT has
multiple, orthogonal build choices there is a vast number of variants to cover
all combinations. Consider:

� language bindings (python, r, ruby, and maybe "go" one day)

� database support (sqlite, MySQL, postgresql, oracle)

� optional xrootd support

� optional proof support

� optional pythia support (v6 or v8)

� optional gsl support

2

There are more, but this is already enough to provide for hundreds of
combinations. This alone is not manageable. If multiple compilers are to be
supported things get even worse. And, of course, new versions of ROOT are
coming out so building out this complexity is an ongoing a�air.

One way to avoid these explosive combinatorics is with a targeted-
monolithic strategy where a select few points in this multi-dimensional space
are chosen for building. One negative consequence of this is to marginalize
away any groups that require unsupported combinations. Only combinations
deemed worthy by central build services are created.

2 Initial build notes

These are the steps to a monolithic ROOT 6 build in Nix, targeting just one
of the combinations described above.

2.1 Starting out

It's recommended to fork NixOS/nixpkgs in GitHub so I work out of that
as origin.

$ cd /srv/nix

$ git clone https://github.com/brettviren/nixpkgs.git

Now to pick a name and location in nixpkgs. The repository is organized
by some category system which seems to have good intention but is actually
not well suited to �nding a good home for ROOT and mostly just serves to
confound my attempts to �nd packages. In any case, the existing ROOT 5
package is at:

$ find nixpkgs -name root

nixpkgs/pkgs/applications/science/misc/root

ROOT is used outside of science (a little) and I wouldn't call Physics
"misc" given that it's the basis of all science (mathematicians, you be quiet).
ROOT is also not predominantly an "application" (root.exe is just a few
dozen lines of code). Also in nixpkgs is:

$ find nixpkgs -name geant4

nixpkgs/pkgs/development/libraries/physics/geant4

3

That seems like a more appropriate location. Also, the name ROOT is
a really horribly generic one. To distinguish it somewhat I'll pick rootsys

and put it as a sister to geant4.

$ emacs nixpkgs/pkgs/development/libraries/physics/rootsys/default.nix

Also, must add to nixpkgs/pkgs/top-level/all-packages.nix.

for now, minimal

rootsys = callPackage ../development/libraries/physics/rootsys {

};

The build environment always starts with this:

$ proot -b /srv/nix/nix-1.9-x86_64-linux/:/nix bash -l

$ source $HOME/.nix-profile/etc/profile.d/nix.sh

$ cd /src/nix

2.2 Getting the source

To start, let's get a recent release of ROOT6 source on disk and in an envi-
ronment to build it.

$ nix-prefetch-url http://root.cern.ch/download/root_v6.04.02.source.tar.gz

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 343 100 343 0 0 1625 0 --:--:-- --:--:-- --:--:-- 1633

100 94.6M 100 94.6M 0 0 5841k 0 0:00:16 0:00:16 --:--:-- 7231k

path is '/nix/store/bbfq8x7hmk521xspxc1iv0b7r26rcgsa-root_v6.04.02.source.tar.gz'

16irxlpl5xirz4v5mnnfs672j6v1j21lmf4xjrjzabjrllvmwhc1

Type that in to the recipe (see ba216cd89f4d434167a24090e078dd69ce8d1ed3)
and test:

$ nix-build /srv/nix/nixpkgs --pure -A rootsys

It should download, unpack, try to patch, run con�gure (thanks to the
existence of ROOT's fake autoconf script) and then fail.

Can also exercise these �rst bits by hand:

$ nix-shell --pure -A rootsys /srv/nix/nixpkgs

$ cd /srv/nix

$ unpackPhase

$ ls root-6.04.02/

4

2.3 Initial CMake'ing

Next is to con�gure the source with CMake. Nix cues o� of the existence of
ROOT's configure script so that needs removal. That is done by writing a
little shell fragment and setting it to the preConfigure variable.

The CMake step can be done by hand like:

$ nix-shell --pure -A rootsys /srv/nix/nixpkgs

$ cd /srv/nix/root-6.04.02

$ cmakeConfigurePhase

It' s a mystery to me how the cmakeConfigurePhase instead of the de-
fault configurePhase gets run for you when a genericBuild is done, but it
will.

At this point, this will fail as we do not tell the environment about any
packages, in particular X11.

2.4 Specifying �rst dependency: ZLib

Let's keep the CMake step failing on X11 for a while, just to keep things
failing fast. Instead, focus on supplying the ZLib dependency:

-- Looking for ZLib

-- Could NOT find ZLIB (missing: ZLIB_LIBRARY ZLIB_INCLUDE_DIR)

-- Zlib not found. Switching on builtin_zlib option

Find out how ZLib is spelled:

$ nix-env -qa '.*zlib.*'

...

zlib-1.2.8

zlib-static-1.2.8

Add zlib to the arguments to the function in default.nix and
buildInputs.

$ nix-shell /srv/nix/nixpkgs --pure -A rootsys

$ cd /srv/nix/root-6.04.02

$ rm -rf build

$ cmakeConfigurePhase

...

-- Looking for ZLib

-- Found ZLIB: /nix/store/az2scrkb88l2q09xa0g6lpbv2mh8lxjl-zlib-1.2.8/lib/libz.so (found version "1.2.8")

5

It is necessary to re-start the nix-shell to pick up the addition of zlib as
re�ected in the environment and delete the prior build/ dir so have CMake
recheck.

2.5 More dependencies

Keep repeating the above to provide dependencies. For many things, ROOT
provides the dubious option to build a dependency using source it provides.
The strategy I take is to prefer system packages.

To iterate, adding more to the default.nix and testing one can use
nix-shell as above repeating the cmakeConfigurePhase script or from out-
side the nix-shell do:

$ nix-build /srv/nix/nixpkgs --pure -A rootsys [-K]

...

note: keeping build directory '/tmp/nix-build-rootsys-6.04.02.drv-0'

This repeats unpacking the source, does it's business in /tmp and cleans
up at the end, even on failure unless the -K is given. If the dregs of the last
are kept around, subsequent runs will increment that trailing number.

2.6 Final version

This is the commit 4ede6c5da4ada577c6669ebfa851d4d1c72db071.

2.7 ROOT Build problems

ROOT's CMake build is pretty good but a few things

� MySQL dependencies fail late in the build due to not �nding mysql.h.
The �x is to add this to CMake's con�g command (cmakeFlags vari-
able):

-DMYSQL_CONFIG_EXECUTABLE="{mysql}/bin/mysql_config"

The patch which is part of the ROOT 5 Nix package is still needed.

--- a/cmake/modules/RootBuildOptions.cmake 1969-12-31 20:30:01.000000000 -0330

+++ b/cmake/modules/RootBuildOptions.cmake 2014-01-10 14:09:29.424937408 -0330

@@ -149,7 +149,7 @@

#---General Build options--

6

use, i.e. don't skip the full RPATH for the build tree

-set(CMAKE_SKIP_BUILD_RPATH FALSE)

+set(CMAKE_SKIP_BUILD_RPATH TRUE)

when building, don't use the install RPATH already (but later on when installing)

set(CMAKE_BUILD_WITH_INSTALL_RPATH FALSE)

add the automatically determined parts of the RPATH

7

	Introduction and Overview
	Other ROOT Packaging
	Modular builds
	Monolithic builds

	Initial build notes
	Starting out
	Getting the source
	Initial CMake'ing
	Specifying first dependency: ZLib
	More dependencies
	Final version
	ROOT Build problems

