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Factorization ?

HARD PQCD:

[ Factorization )—» [Universal pdf’s} — [Phenomenology}

* Factorization is broken if the hard amplitude involves simultaneous
Interactions with more than two partons at a time.

* Coherent scattering: /.>>R4 (coherence effects start at I.~R))




Coherence

Landau-Lifshitz, || §80: “Scattering of waves with large frequencies”

do = ( mc,) Ze“‘q‘rsm?e do. qg~1/h .= A

Coherent scattering: A > R = gr <1 = €' =1

Incoherent scattering: A < R = gr > 1 = €4e=") = 5., Raman (combinational)
light scattering
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CGC/saturation = implementing the coherence.




Kovchegov, KT, 2001

Inclusive gluons

There is an approximate kr - factorization (LO). Though no pdf’s...

do™ C 1 o
d2Z dy  «a 7T(1;7r)3 k* /dQBd%d%@g’b_E)E #4V7 No(2,0,0),

»
>




IHCluSive gluons Kovchegov, KT, 2001

There is an approximate kr - factorization (LO). Though no pdf’s...

doP4 C 1 .
2k dy = - 7r(1;7r)3 12 /dQB d%d%@g,b@f@z Vz Ne(z,0,0),

P

One can trace the origin of the (approximate)
factorization in that there is no restriction on the
quantum numbers of the product (Spin, Color etc.)




Inclusive c-quark: approx. factorization
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Phenomenology: light hadrons
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This is true only if there is a
factorization between the nuclel!




Open charm Rpa vs PHENIX data KT, 2004, 2007
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Factorization for J/y ?

PHENIX AuAu / RGdC CNM, y=1.7
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Factorization for J/y ?

PHENIX AuAu / RGdC CNM, y=1.7

PHENIX AuAu / RGdC CNM, y=0
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NQ! Because factorization is badly broken!




The effective absorption cross sections from fits of Ramona's calculations °
to PHENIX d+Au R, data are shown for each shadowing model.
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just a parameterization of the data that 10
1s independent at each rapidity.

The red points are the averages at
y=-1.7and +1.7.
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Similarly, according to Ferreiro, Fleuret, Lansberg and Rakotozafindrabe:
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Production of J/: relevant time scales

Pre-hadron cc production time Tp = l¢ / c="T7e’ fm

_ 2 My
- My — M,

J/W wave function formation time TR [. =42 e’ fm

Hierarchy of time scales: TF>>tp>>Tins




Production of the g-anti-q pair «osiovinetal, 2001
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Production of J/W: pp vs pA s (o e ir2000
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This mechanism Is
dominant for central
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Propagation of c-anti-c through nucleus
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Only even number of interactions with the nucleus are allowed.
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Breakdown of xg-scaling

Kharzeev, KT , 2005

"~ dashed-dotted : Vs = 5.5 TeV
~ dotted : Vs = 200 GeV

~ solid : Vs = 38 GeV

~ dashed : Vs = 19 GeV

Gpa=A"Opp

x=2/3 plateau: black disk
______—— regime.

Additional assumptions:

J/ W is non-relativistic. Relativistic
correction depends on m but not
on energy - included in prefactor.

Parametrically small corrections
due to the real part and off-
diagonal matrix elements are
neglected.
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producﬁon OF J/\_I) AA Kharzeev, Levin, Nardi, KT,2009
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We have to sum over all odd number of interactions with both nuclei
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COld J/LI) Suppression Kharzeev, Levin, Nardi, KT,2009

e Our results agree reasonably
well with the data.

® Important corrections to be
taken into account:

v Finite coherence length effects
ZC ~ RA

v Contribution of a conventional
process: A+A—J/P+g

50 100 150 200 250 300 350 400 . .
N ® This Raa does not include a

part .
suppression by plasma.




Summary

| discussed hadron production in nuclear collisions at high
energies: Generally, traditional factorization schemes are broken,
although sometimes they approximately hold.

| showed that J/P production mechanism in pp and pA/AA
collisions is different due to strong coherence effects.
Factorization is strongly violated.

We are convinced, that most of J/1y suppression in AA is a
cold nuclear matter effect.




