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Motivation

- after the first d+Au run at RHIC, there was a lot of new results on

single inclusive particle production at forward rapidities dAu— hX
dAu—hX NI
the spectrum %~ "™ and A
d?kdy dA—hX —hX
- ) 1 dN dN " .
the modification factor R, = 5 5 were studied
" d’kdy | d*kdy

Ry coll

y increases

the suppressed production (R,, < 1) was predicted in the
Color Glass Condensate picture of the high-energy nucleus

k/Qg

- but single particle production probes limited information about the CGC

to strengthen the evidence, we need to study (only the 2-point function)

more complex observables

- focus on di-hadron azimuthal correlations S
. . . SN T
a measurement sensitive to possible modifications
of the back-to-back emission pattern in a hard process d Au — h1 h2 X



Outline

Introduction to parton saturation

- the hadronic/nuclear wave function at small x
- non-linear parton evolution in QCD and the saturation scale

Di-hadron correlation measurements

- at high-pyand central rapidities : leading-twist physics
- at low-p; and central rapidities : high-x p; broadening physics
- at low-p; and forward rapidities : low-x saturation physics

Forward/forward d+Au data and CGC predictions

- forward di-pion correlations : monojets are produced in central d+Au
- CGC: parameters fixed with single particle spectra
- the CGC predictions reproduce the measured azimuthal correlations




Parton saturation

x : parton longitudinal momentum fraction
%\W k;: parton transverse momentum

PH = (0,0, P™) x P~ kp the distribution of partons
as a function of x and k;:
QCD linear evolutions: k7 > Qs In(1/z) % s
DGLAP evolution to larger k; (and a more dilute hadron) @ Qs(x)
BFKL evolution to smaller x (and denser hadron)
dilute/dense separation characterized by the saturation scale Q(x) @
! Dfvite syetom
QCD non-linear evolution: kr ~ Qs meaning z < 1 ] -y
g;f(g; k2) gluon density per unit area @ DALAP @
TR2 it grows with decreasing x .
orec ~ as/k?  recombination cross-section IN(k3/A3cp)
recombinations important when p opec > 1 this regime is non-linear
aszf(z, Q2) yet weakly coupled

: : . 2 2 : 2 __
the saturation regime: for #° < Q5 with @ = — 3 0s(Q2) < 1



Di-hadron correlation
measurements



Di-hadron final-state kinematics

final state : kl, v, kv, X = X, =

k e +k,e” ke +k, e

Vs

! Vs

« scanning the wave-functions
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] X, ~x,<1
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central rapidities probe moderate x

T
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X, Increases | x, ~ unchanged

\\]// ,
T @ forward/central doesn’t probe much smaller x

X, ~ unchanged | x, decreases

N x,~1,x,<<1
YN T S
forward rapidities probe small x



Dijets in standard pQCD

in pQCD calculations based on collinear factorization, dijets are back-to-back
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probing Aqcp/Pr <<1
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pt broadening at large x

with lower transverse momenta, multiple scatterings become important

Saturation
@ Qs(x)

probing p; not much higher than Aqqp
higher twists are important, especially with nuclei

. . A
a Gaussian model with Gpy.y ~ q \
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Qiu and Vitev (2006)  also Kharzeev, Levin, McLerran (2005)




forward/central data

STAR (2006)

p+p > 71+h™ +X  d+Au—>n’+h™ +X
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Forward/forward correlations
-




What changes at small x

at small x, multiple scatterings are characterized by Qg (not Aqcp anymore)

In(1/x) ¢ __

A . . . .
q or intrinsic k; , or whatever is introduced to %

account for higher twists in the OPE becomes ~ Qg ~

Qs(x)

in addition, when p;~ Qg and therefore multiple e

scatterings are important, so is parton saturation

D=0

In(k%/Adcp)

the OPE approach is not appropriate at small x, because all twists contribute equally
starting from the leading twist result and calculating the next term is not efficient

when x is large, we don’t know a better way,
but when x is small (such that Qg>> Agcp ), We do

the CGC can be used to resum the expansion Qg/p; expansion

forward dijet production

calculations with different
levels of approximations

Jalilian-Marian and Kovchegov (2005)
Baier, Kovner, Nardi and Wiedemann (2005)

Nikolaev, Schafer, Zakharov and Zoller (2005)
C.M. (2007)



Forward di-jet production

", } o .. - - ('!l ‘,’ J , - > * )

b: quark in the amplitude
x: gluon in the amplitude
b’: quark in the conj. amplitude
x’: gluon in the conj. amplitude

K] },.' }'.'

Fourier transform k. and q.

collinear factorization of quark density in deuteron into transverse coordinates
~ - R
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wavefunction

interaction with hadron 2 / CGC

ki leYk
z = LN n-point functions that resums the powers of gg A and the powers of ag In(1/x,)

|k Llevk + g |eve

computed with JIMWLK evolution at NLO (in the large-Nc limit),
and MV initial conditions no parameters



CGC predictions

with a large-Nc approximation to practically handle to 4-point function

C.M. (2007) S® and S©) expressed as non-linear functions of S

even though the knowledge of S is enough to predict the
forward dihadron spectrum, there is no k; factorization:
the cross section is a non-linear function of the gluon distribution

pr, =5 GeV, y1 =3.5, y2=2

« some results for (1/6) do/dAD

| |
pr, =3.0 GeV

k1=5 GeV, y1=3.5, yp=2 D 0 Gev

0.8 - RHIC

k, 1s varied from 1.5 to 3 GeV
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as k, decreases, it gets closer to Qg and the
correlation in azimuthal angle is suppressed

azimuthal correlations are only a small doPA—h1hoX
part of the information contained in Loy dy,d2kndyy




Evidence of monojets

ptp d+Au central
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Monojets in central d+Au

« in central collisions where Qg is the biggest an offset is needed to

account for the background
there is a very good agreement of the

saturation predictions with STAR data

Albacete and C.M., to appear d+AU = 7PA"+X, Vs = 200 GeV, 2000 < T Qape< 4000
¢ o.o3f pu_>2 Gev/c, 1 6eV/d< prs<pr
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« the focus is on the away-side peak 0'012

where non-linearities have the biggest effect 0005

L #7778
O_IIF)|r|e||||rr‘|”|1|O|ryl vl b b 1
=1 0 1 2 3 4 >
by

hstdir2.20091004.2 20081120

suppressed away-side peak

standard (DGLAP-like) QCD calculations cannot reproduce this



The centrality dependence

it can be estimated by modifying the initial condition for NLO-BK evolution

for a given impact parameter,
the initial saturation scale used is

peripheral collisions are like p+p collisions

the away-side peak is reappearing
when decreasing the centrality

the near-side peak is unchanged

data not binned in centrality yet, but soon
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The p; dependence

with higher p;, one goes away from the saturation regime

pr,, > 2 GeV and pr g > 1 GeV pr,, > 2.5 GeV and prg > 125 GeV  prp >3 GeV and prg > 1.5 GeV
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the away-side peak is restored at higher p+, since this means larger x
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can the alternative scenarios that explain the suppressed R, without saturation explain this ?

Alternatives to CGC ?

Tuchin (2010)

| am aware of one, but saturation is still a crucial ingredient

model assuming k; factorization, neglecting fragmentation, and using KLN evolution
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centrality of data not determined yet, but qualitatively right



Conclusions

the magnitude of the away-side peak, 0012 —— — '. ' }\_ ,- r
compared to that of the near-side peak, 001F  ddu—a'aX
decreases from p+p to d+Au central 0.008 - F -

0.006 = H -

CP(e)

this happens at forward rapidities, 0.004 |- P Ja
but at central rapidities, the p+p and T S e
d+Au signal are almost identical 0 L - ! - - L

= the suppression of the away-side peak occurs when Qg increases

this was predicted, in some cases quantitatively with no parameter adjustments

so far all di-hadron correlations measured in d+Au vs. p+p are consistent with saturation

now one should try to quantify this better, to further develop our understanding of the CGC



