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Combining ZEUS and H1 F: data
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H1 and ZEUS collected similar amount of data: 100 pb-!
= improved statistical precision by ~ 1//2

Improved systematic precision

H1 and ZEUS detectors and data analysis are quite different.

= The H1 and ZEUS cross-sections have different sensitivities to
similar sources of correlated systematic uncertainties



Combination Method

Swim H1 and ZEUS data to the same grid points:
Our ( Xy Q) = 0 (6Q%) 5 Ogys ( Xppygs Qpys) = Tpys (6 Q)

New measurements are obtained by building the x? estimate:

Combination at point i
[Estimate of 1 true cross section]

Measurement at point i
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* 1402 measurements with 110 correlated sources of uncertainty combined to 741
Cross sections.

« X2/ dof = 636.5/ 656 ; No tension in Pulls ; |bj| < 2 = H1 and ZEUS Agree!
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Study of the gluon-gluon amplitude
(above the saturation region)

One of the major results from HERA is that, at low x, F2 is dominated by the
gluon density. The study of the gluon dynamics is very interesting because

of its importance to other physics reactions, like Higgs production at LHC,

but also because it is a fundamental quantity, which is comparable to black
body radiation in QED.

The dynamics of the gluon distribution at low x is determined by the amplitude
for the scattering of a gluon on a gluon, described by the BFKL eq.
d
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Als. k K) = §(k* —k’g)—f—/ d*K(k,q)Als,q. k),
which can be solved in terms of the eigenfunctions of the kernel
/ A" K (kK F(K) = wi, (k).
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in LO folk) = ()" with  w = a.xo(v) for fixed a,



The BFKL eq., with the fixed as predicts that the rate of rise A is only
slowly varying with 0%, L ~0.3 (in NLO). Therefore, the prevailing opinion was
that the BFKL analysis was not applicable to HERA data.

The rate of rise A
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Lipatov 86 & EKR 2008: BFKL solutions with the running a; are
substantially different from solutions with the fixed as.



in NLO, with running a;, the BFKL frequency becomes k-dependent, v(k)
and is determined, in the semiclassical approximation for slowly varying v(k),

from a,(k*)xo(v(k)) + a3 (k*)xi(v(k)) = w,

v has to become a function of & because @ cannot depend on k.

For sufficiently large k, the above equation no longer has a real solution
for v. The transition from real to imaginary values of v(k) singles out a
special value of k=k.i;, such that v(k.i)=0. The solutions below and above
this critical momentum k..: have to match which fixes the phase of ef's.
Near k=k.i:, the BFKL eq. becomes the Airy eq. which is solved by the
Airy eigenfunctions
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for k<<k.i the Airy function has the asymptotic behaviour
k £.(k) ~ sin (qsu. (k) + I)
This gives rise to two bounday conditions at k=k..: and at k=ko

and leads to the quantization condition e ( 1) N
Oy kp)=|n— T+ nmw
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Logarithms of the critical momenta
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Non-Hermitian kernel
Kk k') = a,Ko(k,K)+ alKi(k k) +

k and k’ are not entering the kernel in a symmetric way
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Comparison with HERA data
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Discreet Pomeron Green function

AMK) = D fm(NbfaK) (55)

Integrate with the photon and
proton impact factors

AW = / dﬁ/ bnis(Q K, £) (5L)“’“ fn(k),

dL’ P\
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Proton impact factor
k) = Ak

The fit is not sensitive to the particular form of the impact factor

as long as it is positive and k < O(1) GeV. The support of the proton

impact factor is much smaller than the oscillation period of f, and
because the frequencies v have a limited range

» many eigenfunctions have to contribute and
n has to be a function of n
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The qualities of fits for various numbers

of eigenfunctions and overlaps

Nynas X2/ Ny K A b

40 193.3 /125 0.84 2315 23.2
60 163.3 /125 0.78 3647 25.6
30 156.5 /125 0.73 3081 24.4
100 149.1 /125 0.69 2414 22.8
120 143.7 /125 0.66 2041 21.8

Table 1: The qualities of fits using up to nya eigenfunctions, and the corresponding param-
eters of the fits, with 1y = —0.9 and 4 flavours in the photon impact factor. The parameters
A and b are both given in units of GeV~2,

Noverl X2/ Nyt K A b
0 354.6 /125 0.41 7.80 1.40
10 206.9 /125 0.50 69.1 5.83
20 150.8 /125 0.60 444.4 13.5
30 143.7 /125 0.66 2041 21.8

Note that the differences in the fit qualities would be negligible if the

errors where more than 2-times larger

» new data are crucial for finding the right solution




The final fit
performed with
120 ef's and
30 overlaps
and 5 flavours
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The rate of rise A
F> ~ (1/x)*
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The first successful pure BFKL desciption of the A plot.

N

For many years it was claimed that BFKL analysis was not applicable to
HERA data because of the observed substantial variation of A with Q?



Unintegrated Gluon Density
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n-w relation
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This led to the original assumption of a constant phase (Lipatov 86), up
to nz, and gave the relation
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ni-o relation
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physical interpretation of the 5.1 - » relation
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The polynomial term contains information about the non-perturbative
gluonic dynamics inside the pomeron because the BFKL equation can be
considered to be analogous to the Schroedinger equation of the
intferacting two gluon system. This analogy suggests that the
perturbative wave functions can be smoothly extended to very low
virtualities, i.e. into the non-perturbative region.

» Universal Pomeron?

Can be checked experimentally at EIC by determining the #.1- o
relation eg in diffractive reaction on the nuclei.



physical interpretation of the 5.1 - » relation
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The singular term is generated by the perturbative effects which
were not fully taken into account in our evaluation. This term is
sensitive to the high & behaviour of the glue-glue amplitude, much
beyond the virtualities which are actually tested in the experiment.
This is due to the fact that the values of k... are growing quickly with
the increase of the eigenfunction number and that HERA data
indicate clearly that a lot of ef's give significant contributions. The
high % region is not suppressed in the phase so that already the phase
of the 10th ef is due to the integration over the k region which is

above the thresholds of BSM particles.
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Back up slides



Integrated Green function
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Figure 6: Distribution of the momentum k in the Green function, G,(k, k'), integrated over
k' with the proton impact factor at y = In(s/k*) = In(1/x = 10°).
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