RHIC Polarimetry

A. Bazilevsky
For the RHIC Polarimetry Group

RHIC&AGS User’s Meeting
May 29, 2008
RHIC and Polarimetry

Absolute Polarimeter (H jet)

RHIC pC Polarimeters

Siberian Snakes

Rotators

Solenoid Snake

AC Dipole

Cold Snake

LINAC BOOSTER

RHIC pC Polarimeters

BRAHMS & PP2PP (p)

AGS pC CNI Polarimeter

Warm Snake

Siberian Snakes

Cold Snake

Warm Snake
Polarization Measurements

H-Jet
Absolute polarization

p-Carbon
Polarization profile
Polarization vs time in a fill
Bunch-by-bunch polarizations
Fill-by-fill polarizations

Local Polarimeters
Monitor spin direction at collision regions
(Confirmation of long. polarization)
Capable to monitor polarization decay vs time in a fill and bunch-by-bunch polarization
HJet

Left-right asymmetry in elastic scattering:
Interference between electromagnetic and hadronic amplitudes in the Coulomb-Nuclear Interference (CNI) region

Beam and target are both protons

\[A_N(t) = \frac{\mathcal{E}_{\text{target}}}{P_{\text{target}}} = \frac{\mathcal{E}_{\text{beam}}}{P_{\text{beam}}} \]

\[P_{\text{beam}} = -P_{\text{target}} \frac{\mathcal{E}_{\text{beam}}}{\mathcal{E}_{\text{target}}} \]

\[A_N \approx \text{Im} \left(\phi_{\text{em}}^* \phi_{\text{had}} + \phi_{\text{had}}^* \phi_{\text{em}} \right) / \left| \phi_{\text{had}} \right|^2 \]

RHIC proton beam

H-jet target

Forward scattered proton

Recoil proton

\[t = (p_{\text{out}} - p_{\text{in}})^2 < 0 \]

\[\Delta P_{\text{beam}} / P_{\text{beam}} \approx \Delta P_{\text{target}} / P_{\text{target}} \oplus \Delta \mathcal{E}_{\text{target}} / \mathcal{E}_{\text{target}} \oplus \Delta \mathcal{E}_{\text{beam}} / \mathcal{E}_{\text{beam}} < 5\% \]

\(P_{\text{target}} \) is provided by Breit Rabi Polarimeter
\[H = p^{+} + e^{-} \]

<table>
<thead>
<tr>
<th>1></th>
<th>2></th>
<th>3></th>
<th>4></th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>

Hyper fine structure

Separating Magnet (Sextuples)

RF transitions (WFT or SFT)

H\textsubscript{2} desociater

Holding magnet

Separating magnet

Ion gauge

P+ OR P−

\[A \]

Atomic Beam Source

Scattering chamber

Breit-Rabi Polarimeter

2nd RF-transitions for calibration

HJet target system
HJet: P_{target}

Source of normalization for polarization measurements at RHIC

Nuclear polarization of the atoms measured by BRP: $95.8\% \pm 0.1\%$

Correct for H$_2$, H$_2$O contamination.

$P_{\text{target}} = 92.4\% \pm 1.8\%$

Polarization cycle
$ (+/ 0/ -) = (500/50/500) \text{ seconds}$

Very stable for entire run period!
HJet: Identification of Elastic Events

Array of Si detectors measures T_R & ToF of recoil proton. Channel # corresponds to recoil angle θ_R. Correlations (T_R & ToF) and (T_R & θ_R) \rightarrow the elastic process.
HJet:
Example from Run6

\[
\frac{P_{\text{beam}}}{P_{\text{target}}} = \frac{\varepsilon_{\text{beam}}}{\varepsilon_{\text{target}}}
\]

Measures average over beam profile polarization with fill-by-fill stat. uncertainty ~10%

Data accumulated for a few fills provide normalization for pC polarimeter with uncertainty <5%
HJet

Agreement within stat. errors
HJet performance is very stable through the Years
Background is small and doesn’t change from Year to Year, for
Blue and Yellow (within 2-3%)

⇒ Beam polarization is measured reliably by HJet
Hjet: Two Beam Mode

Successfully tested in Run8

- Background level is the same as in single beam mode
- Will allow to monitor both beam polarizations by HJet simultaneously in all fills
HJet: A_N in pp

$$A_N^{pp} = \frac{E_{\text{target}}}{P_{\text{target}}}$$

$$A_N \approx \text{Im} \left(\phi_{SF}^{em} \phi_{NF}^{had} + \phi_{SF}^{had} \phi_{NF}^{em} \right) / \left| \phi_{NF}^{had} \right|^2$$

100 GeV: calculations with no hadronic spin flip amplitude contribution are consistent with data

24 GeV: calculations with no hadronic spin flip amplitude contribution are not consistent with data

A_N almost constant vs beam energy \rightarrow
Reliable polarimetry in wide range of beam energies

More data to come:
24 GeV: take more data in Run9/10
31 GeV: finalize analysis of data from Run6
250 GeV: take data in Run9/10
pC:

Left-right asymmetry in elastic scattering: Interference between electromagnetic and hadronic amplitudes in the Coulomb-Nuclear Interference (CNI) region

\[P_{\text{beam}} = \frac{-\varepsilon_N}{A_N^{PC}} \]

\[\varepsilon_N = \frac{N_L - N_R}{N_L + N_R} \]

Ultra thin Carbon ribbon Target (5 µg/cm²)

Si strip detectors (TOF, E_c)
$A_N \approx C_1 \phi_{\text{flip}}^{em} \phi_{\text{non-flip}}^{had} + C_2 \phi_{\text{non-flip}}^{em} \phi_{\text{flip}}^{had}$

pC: A_N

Elastic scattering: interference between electromagnetic and hadronic amplitudes in the Coulomb-Nuclear Interference (CNI) region

$E_{beam} = 21.7$ GeV

unpublished

$E_{beam} = 100$ GeV
pC: goals/strategy

Polarization measurements for experiments

Target Scan mode
Provides polarization at beam center, polarization profile, average polarization over profile

20-30 sec per measurement
For stat. precision 2-3%

4-5 measurements per fill, per ring
Controls polarization decay vs time in a fill

Polarization profile, both vertical and horizontal

Normalized to HJet measurements over many fills
Knowledge on polarization profile in one transverse direction is required

Fill-by-fill polarization
Knowledge on polarization profile in both transverse directions is required

Feedback for accelerator experts

Beam emittance measurements, bunch-by-bunch
Polarization
Polarization profile, both vertical and horizontal
Polarization at injection (and polarization loss in transfer)
Polarization on the ramp (and polarization loss during ramp)
pC: polarization in a fill

Example from Run6

Some fills may show polarization decay vs time
Run6: average polarization drop during a fill 0.3-0.4% per hour
pC: Polarization Profile

Examples of pC measurements in Run5

Beam polarization profile is different for different beams, different fills ⇒ Correction for **average polarization** depends on beam/fill
Average Polarization

\[
\langle P \rangle = \frac{\int P(x, y)I(x, y)dx\,dy}{\int I(x, y)dx\,dy}
\]

\[
\langle P \rangle = \frac{\int P(x_0, y)I(x_0, y)dy}{\int I(x_0, y)dy}
\]

\[
\langle P \rangle = \frac{\int P(x, y)I_1(x, y)I_2(x, y)dx\,dy}{\int I_1(x, y)I_2(x, y)dx\,dy}
\]

\(P(x,y)\) – polarization profile, \(I(x,y)\) – intensity profile
Average Polarization

\[
P(x) = P_{\text{max}} \cdot \exp\left(-\frac{x^2}{2\sigma_p^2}\right) \quad I(x) = I_{\text{max}} \cdot \exp\left(-\frac{x^2}{2\sigma_I^2}\right) \quad R = \frac{\sigma_I^2}{\sigma_p^2}
\]

<table>
<thead>
<tr>
<th></th>
<th>Equation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-Jet</td>
<td>[\langle P \rangle = \frac{\int P(x, y)I(x, y)dx}{\int I(x, y)dx,dy} = \frac{P_{\text{max}}}{\sqrt{1 + R_X}}]</td>
<td>If target positioned at beam peak intensity/polarization</td>
</tr>
<tr>
<td>pC</td>
<td>[\langle P \rangle = P_{\text{max}}]</td>
<td></td>
</tr>
<tr>
<td>Collider Experiment</td>
<td>[\langle P \rangle = \frac{\int P(x, y)I_1(x, y)I_2(x, y)dx,dy}{\int I_1(x, y)I_2(x, y)dx,dy} \approx \frac{P_{\text{max}}}{\sqrt{1 + \frac{1}{2}R_Y}}]</td>
<td>If (\sigma_{i1} = \sigma_{i2} = \sigma_i)</td>
</tr>
</tbody>
</table>

Corrections due to polarization profiles are different when normalizing pC to H-Jet and when propagating pC measurements to experiments. Polarization profile in both trans. directions (X,Y) required.
pC: Polarization Profile

Scan C target over the beam cross:

1. Directly measure σ_I and σ_P:
 \[R = \frac{\sigma_I^2}{\sigma_P^2} \]

2. Obtain R directly from the $P(I)$ fit:
 \[
 \begin{cases}
 P(x) = P_{\text{max}} \cdot \exp\left(-\frac{x^2}{2\sigma_P^2}\right) \\
 I(x) = I_{\text{max}} \cdot \exp\left(-\frac{x^2}{2\sigma_I^2}\right)
 \end{cases}
 \]
 \[
 P = P_{\text{max}} \cdot \left(\frac{I}{I_{\text{max}}}\right)^R
 \]

Precise target positioning is NOT necessary
pC: Polarization Profile

\[P = P_{\text{max}} \cdot \left(\frac{I}{I_{\text{max}}} \right)^R \]

Run6 data: R vs fill

\[R(L) \text{ in one fill} \]

\[R = 0.29 \pm 0.07 \]

\[R \sim 0.1–0.3 \Rightarrow 5–15\% \text{ different polarization seen by HJet and by experiments} \]
pC: Polarization vs Fill

Run6 results

Normalized to Hjet
Corrected for polarization profile

\[
\frac{\delta P_B}{P_B} = 4.7\% \\
\frac{\delta P_Y}{P_Y} = 4.8\% \\
\frac{\delta (P_B P_Y)}{P_B P_Y} = 8.3\%
\]
Hjet+pC: Run8 Analysis

Fast (~online) analysis – during the run

Expected A_N from RUN4

$A_N = \epsilon_{\text{TARGET}} / 0.924$

ϵ_{target} and ϵ_{beam} from HJet

Beam polarization from HJet

pC vs fill

pC: Polarization vs fill normalized, profile corrected

Offline analysis is almost completed and results will be released soon
pC: Upgrade

Detector upgrade
 • Photo-diode instead of Si strips

Target upgrade
 • Possibility of using nano-tubes under investigation

pC vacuum chamber upgrade
 • Two polarimeter setups per ring
 • Double number of targets (to avoid a need to open chamber to install new targets during the run)
 • Reduce the time required for successive measurements of horiz. and vert. profiles
 • Allows installation and testing new detectors for higher rate capabilities
PHENIX Local Polarimeter

Utilizes spin dependence of very forward neutron production (PLB650, 325):

ZDC (energy) + SMD (position)
PHENIX Local Polarimeter

Asymmetry vs ϕ

Spin Rotators OFF
Vertical polarization

Spin Rotators ON
Current Reversed
Radial polarization

Spin Rotators ON
Correct Current !
Longitudinal polarization!

Monitors spin direction in PHENIX collision region
STAR Local Polarimeter

Utilizes spin dependence of hadron production at high x_F:

$3.3 < |\eta| < 5.0$ (small tiles only)

Monitors spin direction in STAR collision region
Capable to precisely monitor polarization vs time in a fill, and bunch-by-bunch
Summary

RHIC Polarimetry consists of several independent subsystems

Hjet:
- Absolute polarization measurements
- Absolute normalization for other RHIC Polarimeters

pC:
- Separate for blue and yellow beams
- Normalization from HJet
- Polarization vs time in a fill
- Polarization profile
- Fill-by-fill polarizations for experiments

PHENIX and STAR Local Polarimeters:
- Monitor spin direction (through trans. spin component) at collision
- Polarization vs time in a fill (for trans. pol. beams)
- Polarization vs bunch (for trans. pol. beams)

Reliably provides RHIC beam polarizations
- With relative uncertainty better than 5%

Continuously developing
- Detector and target system upgrade to deal with high beam intensities, and to improve efficiency and reliability
RHIC CNI Polarimetry Group: a factory of CNI Polarimetry experts

Each Run (Year) new students/postdocs are involved in the data monitoring and data analysis. They

- Learn
- Contribute
- Leave (to use newly gained expertise in other projects)

A call for new volunteers to work on Run9/10 etc.

- Please come, learn, become an expert, contribute
- New challenges every Run/Year
- Physics is coming out (with more statistics, reduced systematics, different energies)
Backups
H-jet system

- Height: 3.5 m
- Weight: 3000 kg
- Entire system moves along x-axis $-10 \sim +10$ mm to adjust collision point with RHIC beam.