
E-949 K-064
November 17, 2006

Experiment 949
Technical Note K-064

Target Reconstruction Appendix. A guide to TG coding.

Benji Lewis

Abstract

This appendix is meant to be a guide or manual to the subroutines which are employed by
TGrecon. The description that follows is by no means complete. This is indended to point a
programmer in the right direction. Many of the routines (especially in tgrecon commands.F)
are simple and are straight forward to read the routine directly. However, some are very
complicated and to obtain further understanding a user must read all comments and have an
understanding of the target geometry. Much of the array structure had to be carried over from
swathccd for compatibility with the rest of the KOFIA and PASS2 programs.

All of the subroutines that make up TGreconare placed in files in the following format
TGrecon xxx.F. Where xxx are commands, geometry, cluster, matching, routines, and fill.
The following sections the subroutines are discussed.

The variable names are meant to be descriptive. More complicated routines have comments
within the program to aid in understanding.

A swathccd’s common block swathccd.cmn

These variables are used by swathccd , so understanding these are important in understanding the
how TGreconis implemented.

• iqual swccd - (integer) - quality of the swathccd reconstrucion.

=0, good fit and has a pion track

=1, good fit without a pion track, but kaon is at edge of target.

=2, no pion track along the swath.

=3, no kaon cluster connected to the swath.

=4, an error occurred, see ierr swccd

• ierr swccd - (integer) -

=0, no error

=1, unable to find hits.

=2, number of cluster hits were exceeded.

=3, more than 5 kaon clusters found.

• nclustccd - total number of clusters in clustccd.

1

• nmembccd(i) - number of hits in cluster i. Maximum i = 5

• clustccd(3,j,i) list of kaon clusters

clustccd(1,j,i) = column # in pulse j of cluster # i.

clustccd(2,j,i) = row # in pulse j of cluster # i.

clustccd(3,j,i) = hit # in pulse j of cluster # i.

• swnclustccd - total number of kaon-like clusters connected to the swath (SW clusters).

• swclstagccd(5) - pointers to those clusters that are connected to the swath, points to the ith

cluster in clustccd.

• swkpntrccd - the index in swclstagccd pointing to the best kaon cluster.

• Cwccd(3,j,i) - Same as clustccd. This is the pion supercluster.

• icwccd(i) - The total number of members in cluster Cwccd(,,i).

• CwEnccd(j,i) - Energy of the pion cluster hit from Cwccd(,j,i).

• CwTimccd(j,i) - Time of the pion cluster hit from Cwccd(,j,i).

• CwLkccd(j,i) - Output of the likelihood function of the pion cluster hits from Cwccd(,,i).

• CCWccd(3,j,i) - Couter-Clockwise pion cluster.

• ICCWccd(i) - total # of hits from cluster CCWccd(,,i) on the swath along the opposite
direction of the pion track from Cwccd.

• CCWENccd(j,i) - Energy of the cluster hit from CCWccd(,j,i).

• CCWTIMccd(j,i) - Time of the cluster hit from CCWccd(,j,i).

• SWccd(3,j,i) - Same as Clustccd except that are kaons that connect with the swath.

• ISWccd(i) - Same as nmembccd except that are kaons that connect with the swath.

• SWENccd(j,i) - Energy of the cluster hit from SWccd(,j,i).

• SWTIMccd(j,i) - Time of the cluster hit from SWccd(,j,i).

• NGAMMAccd - Total # of photon hits

• GAMMAccd(k,j) - List of photon hits in the target.

k=1, column # in hit # j

k=2, row # in hit # j

k=3, hit # in hit # j

• GAMENccd(j) - Energy of hit j from list GAMMAccd(,j).

• GAMTIMccd(j) - Time of hit j from list GAMMAccd(,j).

2

• SWMINSPRccd(i) - Closest distance to the DC track among the hits in SWccd(,,i) SW-cluster
(the corresponding fiber is referred to as the ”nearest member”).

• KPIMINccd(i) - Minimum distance between the ”nearest member” and any of the hits in
cluster CWccd(,,i)

• KPIMAXccd(i) - Maximum distance between the ”nearest member” and any of the hits in
cluster CWccd(,,i)

• TIMEK SWccd - Average kaon time hits from cluster SWccd(,,swkpntrccd).

• TIMEKS SWccd - Standard deviation of kaon time hits from cluster SWccd(,,swkpntrccd).

• TIMEP SWccd - Average pion time hits from cluster CWccd(,,swkpntrccd).

• TIMEPS SWccd - Standard deviation of pion time hits from cluster CWccd(,,swkpntrccd).

• NTRIK SWccd - # of kaon hits

• NTRIP SWccd - # of pion hits

• Like SWccd - # combined likelihood of pion fibers.
i.e.

∑
j(CwLkccd(j, swkpntrccd))

• Like2 SWccd - Same as Like SWccd except the likelihood function uses only distance.

• Xin SWccd - X position of B4 hit.

• Yin SWccd - Y position of B4 hit.

• DB4 SWccd - Distance between B4 and nearest fiber.

• DB4TIP SWccd - Distance between B4 and nearest extreme tip of K cluster.

• DVXTIP SWccd - Distance between found decay vertex and nearest tip.

• QB4 SWccd - TRUE if B4 info was used on this event. More specificly, it is TRUE, if the
input values (xin,yin) ≥ 8.0cm.

• PERIFX SWccd - x of pion at the target edge (in target coordinates)

• PERIFY SWccd - y of pion at the target edge (in target coordinates)

• IEDGE SWccd - edge # (1 to 6) at which the pion left the target (consistent with the I-counter
numbering)

• XSTPKccd(2) - x for two extreme possible Kaon stopping points

• YSTPKccd(2) - y for two extreme possible Kaon stopping points

• STX SWccd - average x of Kaon stopping point

• STY SWccd - average y of Kaon stopping point

• STZ SWccd - z of Kaon stopping point

3

• ENERK SWccd - energy of Kaon in target

• ENERP SWccd - energy of Pion in target

• ENERG SWccd - energy of photon in target

• PLNTH SWccd - pathlength of the pion in x-y plane

• DPLNTH SWccd - error in the pathlength

• PLNTHV SWccd - pathlength of the visible pion track in x-y plane

• DVXPI SWccd - Distance from supposed K decay vertex to closest pi fiber

• KPIANG SWccd - Angle between K and pi

• DEXTIP SWccd - Distance between extreme tips of K cluster

• DTARGF SWccd(5) - Real nearest K-Pi triangle separation, analogous to the TN186 TARGF
routine. Note that the above KPIMIN is essentially meaningless, and should be ignored.

• NEV SWccd - Event number for which this data is valid.

• NRN SWccd - -Run number for which this data is valid.

• NTRK SWccd - DC track number for which this data is valid.

B Commonly used variable names

Most indices are associated in the following way:

• i = cluster #

• ii = points to a different i

• j = member # of a given cluster

• k = 1 - column, 2 - row, 3 - hit #

• nc,nc1,nc2 usually refers to a specific cluster #

• nclust - the total number of clusters available

• col = TG fiber column number

• row = TG fiber row number

• hit = hit number within a particular fiber (there can be a maximum of 2 hits in each fiber).

• Cand(3,413) or List(3,413)

Cand/List(1,i) = column of pulse

Cand/List(2,i) = row of pulse

Cand/List(3,i) = pulse #

4

• Clust(1,j,i) = column in element j of cluster i

• Clust(2,j,i) = row in element j of cluster i

• Clust(3,j,i) = pulse # in element j of cluster i

C TGrecon commands.F

TGrecon commands are a set of functions and subroutines that do basic action. Very much like
copy and remove commands in operating systems. I have tried to place error catching statements
when a routine tries to exceed sizes of arrays or attempts to use invalid array indices.

C.1 duplicate cand(Cand,ncand,col,row,hit)

This is a logical function that checks to see if this pulse/hit is already in the candidate list, Cand.
Returns T if the same hit is already within the list. Returns a F otherwise.

C.2 duplicate clust(Clust,nMemb,nc,col,row,hit)

This is a logical function that checks to see if this pulse/hit is already in the cluster number nc from
supercluster Clust. Returns T if the same hit is already within the cluster. Returns a F otherwise

C.3 copy cand(List1,nlist1,List2,nlist2)

Copies the List1 (with nlist1 elements) into a new list, List2

C.4 copy clust(Clust1,nMemb1,nclust1,Clust2,nMemb2,nclust2,maxclust2,omit zeros)

Copies supercluster Clust1 into a new supercluster named Clust2. If omit zeros is F, then the Clust2
is identical to Clust1. If omit zeros is T, then any empty clusters within Clust1 are skipped during
the copying.

C.5 copy clust pi(...)

This routine is the same as the copy clust routine except that it defines Clust2 as Clust2(3200,*),
instead of the standard cluster array definition of Clust2(3150,*),. This routine had to be created
since in swathccd the kaon and pion clusters have a different maximum number of elements allowed
in each cluste (150 for kaons and 200 for pions). In TGrecon, all clusters have a maximum number
of 150. This allows for more generic routines.

C.6 Remove elem Cand(List,nlist,rm el,quick)

As the name implies, this removes element number rm el from List (which has nlist total elements).
If quick is T, then ordering of the list is not preserved. When quick is T the routine is faster. If
quick is F, then ordering of the list is preserve (which slows down the routine).

5

C.7 Remove elem Clust(Clust,nMemb,nc,rm el,quick)

As the name implies, this removes element number rm el from cluster number nc from the super-
cluster Clust (which has nMemb(nc) total elements). If quick is T, then ordering of the cluster is
not preserved. When quick is T the routine is faster. If quick is F, then ordering of the cluster is
preserve (which slows down the routine).

C.8 Add elem Cand(Cand,ncand,col,row,hit)

Adds an hit to the candidate list Cand. The hit number hit from fiber with row number row and
column number col. Note that hit is 1st, 2nd, 3rd, etc. hit in a given fiber. The hit is added to the
end of the list.

C.9 Add elem Clust(List,elem,Clust,nMemb,nc)

The hit elem from the List is added to the cluster Clust(,,nc). The hit is added to the end of the
list.

C.10 Clust Order(Clust,nMemb,from,to)

Changes the cluster order around. Does not change the order of individual cluster list. Moves
cluster from ↔ to. That is if we have a supercluster A with 3 clusters (a,b,c) and we did the
following
Clust_Order(A,nMemb A,1,3)
Then the clusters would be order in the following way c,b,a.

C.11 Clust Memb Order(Clust,nMemb,nc,from,to)

Changes the member order of the specific cluster Clust(,,nc). Very similiar to Clust Order except
the individual elements of a given cluster will be changing order. This routine is used in Track Order
in which (most cases) attempts to order the pion track from decay point to exit point.

C.12 remove zero clust(Clust,nMemb,nclust)

It is possible via the Remove elem Clust to remove all element from a given cluster. Since an empty
cluster is of no use to the programmer and possibly confuse other routines remove zero clust was
created. It’s purpose is to scan through the supercluster Clust and remove null clusters from the
cluster list.

C.13 Double Hit(Clust1,nMemb1,nc1,Clust2,nMemb2,nc2,double,ndouble)

From the two input clusters, Clust1(,,nc1) and Clust2(,,nc2), this routine will return a list, dou-
ble(2,ndouble), of the fibers that are in common to both clusters.
double(1,i) points to the member index number from Clust1(,,nc1)
double(2,i) points to the member index number from Clust2(,,nc2)

6

C.14 Repeat Hits(Clust1,nMemb1,nc1,Clust2,nMemb2,nc2,double,ndouble)

This is identical to Double Hit except that it looks for a hit in common (not a fiber). Remember
that a fiber can have multiple hits.

C.15 Order Cluster(Clust,nMemb,nc,Order)

This changes the order of the members of Clust(,,nc) given by an ordering array as defined by the
routine Track Order. Uses Clust Memb Order to accomplish the task.

C.16 test change utc

A temporary routine to rotate the UTC track about a point. Use to help study Kink Finder.
This routine is of no use after the study is complete.

C.17 rotate utc

A more general version of test change utc.
This routine is of no use after the study is complete.

D TGrecon geometry.F

TGrecon geometryis a set of routines that deal with the geometry within the E949 target so that
reconstruction of the target is possible or at least made easier. Although most routines in the
TGreconenvironment uses geometry to so degree, these routines represent the basics.

D.1 arc length(r,x1,y1,x2,y2)

A function that returns the length of an arc on a circle of radius r from the points (x1,y1) to (x2,y2).
The calculation has two solutions. The smallest is the returned value.

D.2 translate(x,y,dx,dy)

Translates a point (x,y) to (x+dx,y+dy)

D.3 rotate(x,y,theta)

Rotates point (x,y) about the orgin by angle theta.

D.4 circle inter(xc1,yc1,r1,xc2,yc2,r2,x,y)

Given two circles with radius’ and center point as r1, (xc1,yc1) and r2, (xc2,yc2) this routine will
return the points,(x(1),y(1)),(x(2),y(2)) where the circles intersect. If the circles do not intersect
the returned values will be (999.,999.).

D.5 lines inter(m1,b1,m2,b2,x,y)

Returns the intersection point (x,y) of two lines with slopes and y-interscepts of m1,b1 and m2,b2.

7

D.6 lines angle(m1,b1,m2,b2,tan ang)

Returns the angle tan ang between two lines with slopes and y-interscepts of m1,b1 and m2,b2.

D.7 get neigh(iel,iro,NbrList,nnbrs)

Does the same as Nbrs (subroutine within swath.F), but removed the edge fiber stuff (this is possibly
a mistake to do, need to look futher).
Input a fiber column number iel and row number iro and get neigh will return a list of fibers that
neighbor the input fiber.
nbrlist(1,*) = column number of neighboring fiber
nbrlist(2,*) = row number of neighboring fiber
nnbrs = total number of neighbors

D.8 find neighbors(icol,irow,Neighbors,nneigh)

This is an expanded version of get neigh so that gaps are allowed.
Input a fiber (col,row) and this routine will return an array with the adjacent and gap neighbors,
see Figure 1.
Neigbhors(1,1,index) = adjacent neighbors column number
Neigbhors(1,2,index) = adjacent neighbors row number
Neigbhors(2,1,index) = gap neighbors column number
Neigbhors(2,2,index) = gap neighbors row number
nneigh(1) = total number of adjacent neighbors
nneigh(2) = total number of gap neighbors

D.9 find clust neigh(Clust,nMemb,nc,Neighbors,nneigh)

Given a cluster,Clust(,,nc) ,this routine will find all fibers that are neighboring the cluster. NOTE:
The routine is currently not working for gap neighbors. The arrays Neighbors and nneigh are in the
same format as in find neighbors.

D.10 position to fiber(xin,yin,row,col,nfib)

Given an (x,y) point in space this routine will return a fiber (row,col) and overall fiber number, nfib,
which is calculated by fiber# = column# + 24× row#.

D.11 track to fiber(x0,y0,radius,dist to fiber)

This routines returns an array, dist to fiber(24,23), whose element values are the distances from
each fiber to the closest approach from a track with radius and center point of (x0,y0).
dist to fiber(col,row) = distance from track to fiber (col,row).

D.12 min max dist clust(Clust,nMemb,nclust,do track,x,y,mn pnt,mn dis,mx pnt,mx dis)

Searches all clusters within the supercluster, Clust, and finds the fiber (within each cluster) that
is the closest to and futherest away from either a point (x,y) or a UTC track. If do track is
T, then the routine uses for distance the array Spr(col,row) (within tgrecon.cmn) as the track

8

distances to the fibers. If do track is F, then the routine uses the distance from the point (x,y)
to the fiber in question within the cluster. The returned variables are as follows: Input Values:
Clust,nMemb,nclust,do track,x,y
Returned Values: mn dis(i) = the minimum distance from cluster i to the point (x,y) or Spr.
mn pnt(i) = the index value of the minimum-distance fiber from cluster i to the point (x,y) or Spr.
mx dis(i) = the maximum distance from cluster i to the point (x,y) or Spr. mx pnt(i) = the index
value of the maximum-distance fiber from cluster i to the point (x,y) or Spr.

NOTE: This routine is dependent upon the array Spr within tgrecon.cmn to be filled first (if
do track is T).

D.13 Neighboring Clust(...)

Input Values: Clust1,nMemb1,nclust1,Clust2,nMemb2,nclust2, board thres
Return Values: mn dist,mx dist,mn dist pnt,mx dist pnt,Border,nCBorder,nborder

• board thres is the threshold of what is considered to be a bordering neighbor.

• mn dist(i,j) = the minimum distance from Clust1(,,i) to Clust2(,,j).

• mx dist(i,j) = the maximum distance from Clust1(,,i) to Clust2(,,j).

• mn dist pnt(k,i,j) , mx dist pnt(k,i,j) are index of the fibers that are min and max distances
from each other in Clust1(,,i) to Clust2(,,j).

when k=1, then this is the pointer to the element of from Clust1(,,i)

when k=2, then this is the pointer to the element of from Clust2(,,i)

• Border(i,j) = Does 0 Clust(,,i) border Clust(,,j) If no border; 1 if there is a adjacent border;
2 if there is a gap border.

• nCBorder(i) = the total number of clusters that border Clust(,,i)

• nborder = total number of clusters that border.

D.14 Closest Cluster(Clust,nMemb,nclust,xin,yin,clust dist,closest clust)

Finds the closest cluster from Clust to the point (xin,yin). The return values are the cluster number
that is the closest closest clust and the distance clust dist. This routine calls min max dist Clust.
This routine is helpful to determine the best kaon cluster relative to the B4 position of the Kaon.

D.15 TG Edge(Clust,nMemb,nclust,edge,nedge)

Searches all clusters within the Clust to determine if the cluster borders the edge of the target.
edge(i) will be 1 if cluster i is bording the edge (0 otherwise). nedge is equal to the total number of
clusters that do border the edge.

9

D.16 End Points(Clust,nMemb,nclust,endpt,endpt dist)

Finds the end points of all clusters in Clust by first determining the hit furthest away from the
center of the target, point (0,0), then finding the hit that is furthest away from the first fiber.
Indices to the fibers, from cluster i, are in endpt(1,i) and endpt(2,i). endpt dist(i) is the distance
from one end point to another in cluster i.
Note that Extreme Tips and this routine are very similiar, but Extreme Tips seems to be alittle
more robust.

D.17 Extreme Tips(Clust,nMemb,nclust,endpt,endpt dist)

Finds the extreme tips of all clusters in Clust by determining the two fibers that are furtherest away
from one another. endpt(1,i) and endpt(2,i) are indices to the extreme tips of cluster i. endpt dist(i)
is the distance from one tip to another from cluster i.

Note that spurs (i.e. other unrelated tracks that unexpectitly joins the real track) could cause
a wrong tip to be picked. Possible improvements to this could include some type of ordering of the
fibers from expected tips.

E TGrecon cluster.F

Routines dealing with clustering of target hits are discussed within this section. Clustering is defined
as grouping hits together that are in close geometrically.

E.1 Cluster Cand(List,nlist,Clust,nMemb,nclust,maxclust,do gap,ierr)

Given list of candidate hits, List with nlist hits, (usually created by Classify Cand), creates a
supercluster, Clust. The maximum number of clusters allowed in Clust is maxclust. If do gap is T,
then the clustering allows the clusters to have gaps seperating the fibers, see Figure in TGrecon
technote. If do gap is F, then when one looks at the fibers from a cluster the cluster will be a solid
object, see same figure.
This routine is modeled after a biological virsus infecting other neighboring cells. One cell (fiber/hit)
is infected (with the virus) and then the newly infected cell passes the virsus along as well. Once
all of the environment (all neighboring hits) are infected, a search through the list for uninfected
(not assigned to a cluster yet) hits is done. When a new hit, within List, is found a new virus is
’seeded’ to this hit and then we let the infection spread. Each new cluster of hits is analogous to a
different strain of the virus.

E.1.1 completion(List,nlist)

A logical function the is used within Cluster Cand to determine if all the hits have been assigned
to a cluster.

E.1.2 infect(List,nlist,elem,group,do gap)

A routine made for Cluster Cand to place (or infect) neighbors of the current cluster in question,
group is the current cluster number.

10

E.2 Mend Fibers(...)

Input: (Clust,nMemb,nclust,origList,orignlist,Twindow,QTIME,do gap,do grow,do rem,QMEND)
There is a need to add new hits to a preexisting cluster. Mend Fibers is constructed in the

most general way as possible. You give this routine a existing supercluster Clust and a list of
hits, origList, that you would like the algorithm a chance of mending into the clusters. Note that
Mend Fibers is not forced to use all the hits from origList. The average time of the original clusters
are calculated and a time window is created by the input variable Twindow. The time window is
(avgtimei − Twindow) ≤ hittime ≤ (avgtimei + Twindow), such that i is the cluster number.

Logical Switches:

• qtime: If true, will impose the time window on the possible list of hits to mend. If false, no
time window is imposed on the list of hits to mend.

• do gap: If true, mends hits that are adjacent neighbors and are gap neighbors to the cluster.
If false, only mends hits that are adjacent to the cluster.

• do grow: If false, only considers hits possible for mending that are neighboring (what a neigh-
bor is is defined in do gap) the original cluster. If true, allows mending of neighbors of new
mended hits as well as the original cluster. As the name implies if it is true, the cluster can
grow much more readily. With this in mind, the programmer should be careful when selecting
this switch as true.

• do rem: If false, origList remains the same. If true, any hits that are mended into a cluster
in Clust are removed from origList.

E.3 Combine Clusters(Clust,nMemb,nclust,Clust2,nMemb2,nclust2,maxclust,do gap)

Given two superclusters, Clust, Clust2, the routine submits the list to the Cluster Cand program
for clustering. This routine omits hits that occur in both superclusters.

E.4 Re Cluster(Clust,nMemb,nclust,maxclust,do gap)

On some occasions such as when hits are mended to or removed from the clusters within Clust
individual clusters within the supercluster combine together to form a larger cluster. Or possible
a cluster breaks apart into two or more pieces when hits are removed. What Re Cluster does is to
submit all the hits from the supercluster to Cluster Cand.

F TGrecon matching.F

The matching division deals with finding the best cluster-to-cluster match between the pion clusters
and all of the kaon clusters (kaon and kaonlate). Cluster matching is discussed in some detail in the
clustering section of this technote. These routines are a broader verision that were inbedded within
TGrecon, but grew in size and complexity. So for clarity, I broke the matching into a seperate
division. However, these routines are not created to be very general in nature (partly due to their
beginnings). They use variables stored in the tg matching common block in tgrecon.cmn.

All 4 routines described in this section have the following inputs and one output value:

11

• xin,yin the value in which you believe the Kaon entered the target. i.e. B4 entering point. If
the values are ≥ 8.0 then the value are assumed to be unknown, the target has a radius of
only 6cm.

• xexit,yexit the value where you believe the pion exited the target.

• matching a flag value returned by the routine to state the cluster matching results.

= 5, A match found between a kaon cluster and a pion cluster that is on the swath.

= 7, A match found between a kaon cluster and a pion cluster that is not on the swath.

= 13, Error occurred during an attempt to match a swath pion cluster to a kaon cluster.

= 15, No Pion/Kaon matching. This is a very basic failure.

F.1 Match Clusters

This is the main matching routine, the subroutines that follow are called from here. The superclus-
ters in question at this point are PClust, KClust, and KlateClust (pion cluster, kaon and late kaon
cluster). The matching tries to find a pion cluster that posses ’matching’ qualtities to either a kaon
or late kaon cluster.
The overall problem with matching is what criteria is most important. The problem becomes worse
when the importance of the criteria changes depending on what type of cluster match you are
dealing with. One of Match Clusters’s purpose is to find what match category you are working
with.

Initial Matching Criteria

• The average time of a pion cluster must be greater than the average time of the kaon cluster.
I have a hard coded change for this criteria. Since the pion fiber time is somewhat uncertain
I have placed in a 1ns buffer. That is, a match is possible only if avgtimepi ≥ avgtimeK − 1.

• The pion cluster and kaon/kaonlate cluster must be neighboring.

At this point, the kaon and kaonlate clusters carry the same weight. This was not the case in earlier
version of matching and is not the case in swathccd . In swathccd if there is anyway to get a kaon
cluster to match it is accepted, even if a kaonlate cluster is a better match.

Secondary Matching Criteria

• Pion cluster on the swath. Having pion clusters on the swath is important for any event with
a valid UTC track, which includes all triggers except KBeam.

• Having any match.

The matching is highly dependent upon the Neighboring Clust. Initial swath, swidth, is 1.0. Initial
neighbor distance 1.2. Since having a pion cluster on the swath is currently the most important
criteria to statisfy, swidth is increased to a maximum of swidth thres (2.2). If a swath-pion match
is not yet found, we increase the range of what a neighbor is considered to be, 2.0cm. If at this
point a pion-swath match is not found, we have to give up the hope of having a pion cluster on the
swath that has a adjoining kaon cluster. If there is a match then a call to Match SwP K is made
to finishing the matching.
If no swath-pion match is made, then we default to any match. And a call to Match PK is made.

12

F.2 Match SwP K

This routine is called by Match Clusters when we have pion clusters that are on the swath. Pion
clusters on the swath are the ideal candidates to reconstruct events in which PNN1/PNN2 are
interested in analyzing.

F.3 Match PK

This routine is an attempt to reconstruct a kaon decay within the target. This routine is called
when we do not have pion clusters that on located on the swath.

F.4 Match edgeK

This was an attempt to reconstruct events when the Kaon is located on the edge of the TG. In such
cases, no pion hits are observed. This routine is not called by Match Clusters and is Match Clusters
not currently stable.

G TGrecon routines.F

This division is a set of routines that have more of a specific purpose and can not fit within different
class of subroutines.

G.1 Classify Cand

Creates a list of candiates with windows in time and energy. When dowidth is true, the time of the
hit is considered the sum of fib t and fib w. The dowidth switch is in place due to swathccd having
a candidate list that is created this way. TGreconhas dowidth always false.

G.2 Remove Double Hits(Clust1,nMemb1,nc1,Clust2,nMemb2,nc2,removed1,removed2)

Give this routine two clusters, Clust1(,,nc1), Clust2(,,nc2) and it will remove the hits that are in
both clusters. The logical varibles removed1 or removed2 will be true when a hit is removed from
Clust1(,,nc1) or Clust2(,,nc2), respectively. Any hit that is in both clusters will remain in the
cluster whose average time the hit is closest.

G.3 Omit Outliers(Clust,nMemb,nclust,Clust2,nMemb2,nclust2,twindow,do dweight)

From a supercluster, Clust, generates a new supercluster, Clust2, that has omitted outliers in time.
The purpose of this routine is to remove hits that do not belong in the cluster. The is determined
by calculating the average time value of each cluster and testing whether ... If do weight is true a
weight of e−|x| (x is the d.c.a distance of the hit fiber and the UTC track) and is applied to the time
of the hit.

NOTE: the UTC track is defined through tgrecon.cmn by the varible Spr. Hence Spr should be
filled before calling this routine if do weight is true.

13

G.4 likelyhood(dtime,do t,energy,do e,dist,do d)

This function is copied from swathccd .F likelihood function (they are spelled differently note the
y and i). swathccd version is dependent on the variables dtime (time difference), energy, and dist
(d.c.a. to the UTC track). This version will turn off the depencence of any of these variables by
making one of the following switches false, do t, do e, do d. This could be useful when the UTC
track is not realiable such as in TG scattered events.

G.5 Like Omit(Clust,nMemb,nclust,avg time,like thres,do t,do e,do d,Cand,ncand)

do t, do e, do d are the switches for the likelyhood function used within this routine. avg time is the
average times that the programmer would like to use for clusters in Clust (this could be the average
time after omitting outliers, etc.). If the likelyhood function returns a value less than like thres the
hit is removed from the cluster. All hits removed are placed in the hit list Cand for later use.

G.6 Like Omit Pnt

Basically a copy of Like Omit except: (1) Looks only at one cluster. (2) Does no remove hits from
the cluster. List points to the index values of all hits that does not pass the likelyhood threshold.
(3) Track information is not assumed to be Spr. User must input the radius and center of circle r,
x0, y0.

G.7 Cluster on Swath(swidth,Clust,nMemb,nclust,SwClust,n onSwClust,nswclust)

Uses the Spr array to determine the distance from the swath to the fiber. The width of the swath is
set by swidth. SwClust points to the clusters that have hits on the swath. n onSwClust(i) indicates
the number of elements from cluster i on the swath. nswclust the total number of clusters from
Clust that are on the swath.

G.8 Avg time Cluster(Clust,nMemb,nclust,avg time,std time)

Returns the average time and standard deviation in a cluster. The average time is -999. if no
members exist and standard deviation is 999. if less than two members exist.

G.9 Avg time Cluster weight

Similar to Avg time Cluster with the following exceptions: Note that when do window = F and
weight type = 0, Avg time Cluster returns the same value as Avg time Cluster weight

• weight type

= 0, applies a weight of 1.

= 1, applies a weight from sw weight ccd.

= 2, applies a weight from sw weightk ccd.

• do window

= T, do not include hits outside the time window.

= F, there is no time window

14

• time low,time high defines the time window.

G.10 Clust to Clust tracking

This routine tracks the movement from Clust1(,,nc1) to Clust2(,,nc2). Assumes the starting point
of the particle is in Clust1(,,nc1) at point (xin,yin) then the track ends and Clust2(,,nc2) tracks
begins. Created to help find the decay vertex of the Kaon. The routine returns the point (ver-
tex x, vertex y) (i.e. the decay vertex) which is the end point of the Clust1(,,nc1)’s track and
the beginning of Clust2(,,nc2)’s track. The ending point of Clust2(,,nc2)’s track is the point
(Ext pnt x1,Ext pnt y1).

G.11 Track Order(Clust,nMemb,nc,xin,yin)

This routine orders the hits within Clust,,nc so that the first hit is fiber at or nearest to the point
(xin,yin). Modeled similiar to the biological infection scerino used in Cluster Cand.

G.11.1 trk complete(Order,norder)

Logical function used by Track Order to determine if the Track Order has finished tracking.

G.11.2 seed order(Clust,nMemb,nc,Order,ord,f Order,f ord)

A routine used by Track Order to find the next hit to seed (with an ordered infection) when
Track Order was unable to find the next closest neighbor.

G.11.3 infect order(Clust,nMemb,nc,memb,Order,ord,f Order,f ord,do gap,found)

A routine used by Track Order to find and infect the next hit with next order number.

H TGrecon fill.F

This set of routines is what makes TGreconfairly transparent when used instead of swathccd . This
routine fills variables from swathccd ’s common block, swathccd.cmn, with variables from TGrecon’s
common block, tgrecon.cmn.

H.1 Initialize Common

This routine initializes all values from all common blocks directly associated with the reconstruc-
tion,swathccd.cmn and tgrecon.cmn. Most values are set to zero, 999., or -999. Making the values
in question out-of-range, so that if these values are not assigned anything by a subroutine then it
will stay beyond the true value region.

H.2 Last Common

This routine fills swathccd.cmn values that are not need until TGreconis finished.

15

H.3 Fill Gamma

Fills variables associated with the Gamma particle, in the copied from a block of code from swathccd.

H.4 Fill Aux Arrays

This is more of debugging routine than anything else. What it does is places all of the hits that
were part of the pi, kaon candidate lists and any hit that was not assigned to the final pion and
kaon clusters (and the gamma hits) are assigned to new auxiliary arrays placed from a new common
block. These arrays could be viewed in PAW Photo and determine if the Algorithms are picking
the wrong Kaons and Pions. This routine should be disabled after all studies are done to TGrecon.

H.5 Energy Time(tpiext)

This routine similiar to Fill Gamma and Last Common is to fill swathccd.cmn variables in the same
way swathccd would fill the variables. This block of code is identical to code from swathccd .

I Kink Finder routines

I.1 Cand linefit2(x1,y1,List,nlist,err x,err y,dca min,m,b,rsq,sigma m,error)

The routine which is currently used. x1,y1 are the arrays which store the (x,y) coordinate values.
List is a pointer array which indicate the indices that you would like to use from the x,y arrays.
nlist is the number in LIst. dca min has been disabled. The rest of the input and outputs are passed
to least sq linefit().

Currently, this routine is called by KinkFinder and sends the distance along the UTC track
(starting) from the exit point of the target as the x1 array and y1 is the distance of closest approach
to the fibers in the cluster of interest within KinkFinder .

I.2 Cand linefit(Clust,nMemb,nc,List,nlist,err x,m,b,rsq,sigma m,error)

Similar to Cand linefit2 except it uses the (x,y) coordinates of a cluster hits.

I.3 least sq linefit(x,y,elements,err x,err y,exclude,m,b,rsq,sigma m,error)

• x,y: list of x and y coordinates to perform the fit on.

• elements: total number of elements in x and y

• err x,err y: not used.

• exclude logical array which if exclude(i) is true will exclude the point x(i), y(i) from the fit.

• m,b,rsq: slope, y-intercept, and R2 (correlation) of the fit

• sigma m: standard deviation of m (slope)

• error: error flag, informs user what caused an error

16

I.4 get kink list oldway(Clust,nMemb,nc,dca min,List,nlist)

Original method to determine the list of non-kinked fibers. Tries to determine if a hit is either a
non-kinked or kinked hit by using the distance of closest approach (dca min) of the hits.

I.5 get kink list2(Clust,nMemb,nc,width,List,nlist)

Works in a similar manner as get kink list oldway, but assumes (which is currently the case) that
the pion fibers were ordered from decay vertex to the exit point. Not not consider a hit non-kinked
if it is with the swath that has a width of width.

I.6 get kink list(Clust,nMemb,nc,width,List,nlist)

Called by KinkFinder . This routine assumes the pion fibers have already been order from decay
vertex to the exit point. Therefore, the list of non-kinked fibers are 1 thru the number of non-kinked
fibers.

I.7 pick closest track(...)

Inputs/Outputs: (Clust,nMemb,nc,d trk1,d trk2,min dist,List1,nlist1,List2,nlist2,Both,nboth
This routine is was replaced by add track fibers. The purpose of this routine is to

determine if a hit should be classified as a non-kinked fiber or a kinked fiber. This is accomplished
by determining what track, trk1 or trk2, is closest to fiber Clust(*,i,nc). The ith hit is then stored
into either List1 or List2. If the fiber is within the distance min dist, then the ith hit is stored in
List1, LIst2, and Both arrays.

I.8 add track fibers(...)

Inputs/Outputs: (Clust,nMemb,nc,d trk1,d trk2,min dist,List1,nlist1,List2,nlist2,Both,nboth)
A more sophisticated version of pick closest track. The inputs and outputs are identical; only

the ’guts’ have changed.

17

