First results from BNL E949 on $K^+ \rightarrow \bar{\psi} + \bar{\psi}$

For the E949 collaboration:

Ilektra A. Christidi
SUNY at Stony Brook

Stony Brook Physics Department HEP seminar
Apr 27 2004
Outline

• Theoretical motivation
 • CKM matrix
 • The decay $K^+ \rightarrow \pi^+ \pi^+$
• The E949 experiment:
 • Apparatus & measurement
 • Past (E787) results
 • Analysis strategy
• The result
The CKM matrix relates weak with strong eigenstates. In the Wolfenstein parametrization (to O(ε^7)),

\[
V_{\text{CKM}} = \begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
= \begin{pmatrix}
1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\
-\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\
A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1
\end{pmatrix}
\]

where \(\bar{\rho} = \rho \left(1 - \frac{\lambda^2}{2}\right) \), \(\bar{\eta} = \eta \left(1 - \frac{\lambda^2}{2}\right) \)

CP violation arises from the irreducible imaginary phase of \(V_{\text{CKM}} \), because it’s 3x3 (3 generations)
V_{CKM} is unitary, i.e. $VV^+=I \Rightarrow 6$ relations of $V_{ij} = 0$

For example, $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$

\Rightarrow A “Unitarity triangle” in the $\bar{\eta}$-\(\varsigma\) plane ($V_{ud} \cong 1$, $V_{tb} = 1$):

Processes w/ small theoretical uncertainties:

First E949 results
Ilektra A. Christidi
A better determination of V_{td} from $K^+ \to \delta^+ \bar{\tau}$ will provide a sensitive test of the SM by comparing the results from the K and B sector and probe new physics.
The SM $K^+ \rightarrow \bar{\phi}^+ \bar{\phi}^+ \bar{\phi}^+$ BR

- All processes at 2nd order
- Main contribution of t in the loop (u & c cancel by GIM mechanism)
- Very theoretically "clean" calculation (precision $< 5\%$, uncertainties mainly from c sector)

\[BR(K^+ \rightarrow \pi^+\nu\bar{\nu}) \propto \sum_{l=e,\mu,\tau} \left[V^*_{cs} V_{cd} X(\chi_c) + V^*_{ls} V_{ld} X(\chi_t) \right] \times (HADR) \times (\nu\bar{\nu}) \]

... $BR \propto (\sigma \eta)^2 + (\rho_o - \bar{\rho})^2 \rightarrow$ ellipse in η-ζ plane

\[\sigma = \left(\frac{1}{1 - \lambda^2 / 2} \right)^2 \]

\[BR_{th}(K^+ \rightarrow \pi^+\nu\bar{\nu}) = (0.77 \pm 0.11) \times 10^{-10} \]
3-body decay w/ 2 missing particles: $0 \leq p_{\delta^+} \leq 227$ MeV/c \implies
Signal: $\delta^+ + \text{nothing}$, backgrounds vetoed $\sim 10^{-11}$!

- Need
 - particle identification (PID)
 - all other charged particles vetoed $< 10^{-3}$
 - redundant precise kinematic measurements

<table>
<thead>
<tr>
<th>Decay</th>
<th>B</th>
<th>PID</th>
<th>veto</th>
<th>kine.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+ \rightarrow \pi^+\pi^0$</td>
<td>0.21</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^+\nu$</td>
<td>0.63</td>
<td>√</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^+\nu\gamma$</td>
<td>0.005</td>
<td>√</td>
<td>√</td>
<td>-</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^0\mu^+\nu$</td>
<td>0.032</td>
<td>√</td>
<td>√</td>
<td>-</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^0e^+\nu$</td>
<td>0.048</td>
<td>√</td>
<td>√</td>
<td>-</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+\pi^-\pi^+$</td>
<td>0.056</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>
Decay product (δ^+ or ι^+) range in scintillator vs momentum:

- 2-body decay peaks
- 3-body decay bands
- Scattering tails
The E949 collaboration

P. Kitching
Centre for Subatomic Research, University of Alberta

D.A. Bryman
University of British Columbia

L.S. Littenberg, G. Redlinger, R.C. Strand and B. Viren
Brookhaven National Laboratory (BNL)

P.S. Cooper, E. Ramberg and R.S. Tschirhart
Fermi National Accelerator Laboratory (FNAL)

M. Miyajima and Y. Tamagawa
Fukui University

A. Artamonov, A. Kozhevnikov, A. Kushnirenko, L. Landsberg, V. Mukhin, V. Obraztsov, D. Patalakha,
S. Petrenko and D. Vavilov
Institute for High Energy Physics (IHEP)

V.V. Anisimovsky, A.P. Ivashkin, M.M. Khabibullin, A.N. Khotjantsev, Y.G. Kudenko, O.V. Mineev and
N.V. Yershov
Institute for Nuclear Research (INR)

T. Tsunemi, Y. Yoshimura and T. Yoshioka
High Energy Accelerator Research Organization (KEK)

N. Muramatsu
Japan Atomic Energy Research Institute (JAERI)

T. Fujiwara, K. Mizouchi, T. Nomura and N. Sasao
Kyoto University

T. Shinkawa
National Defense Academy of Japan

B. Bassalleck, B. Lewis and J. Lowe
University of New Mexico (UNM)

M. Nomachi
Osaka University

T. Nakano
Research Center for Nuclear Physics (RCNP), Osaka University

I.-A. Christidi and M.D. Marx
Stony Brook University

P.C. Bergbusch, E.W. Blackmore, S. Chen, J. Hu, A. Konaka, J.A. Macdonald, J. Mildenberger,
T. Numao, J.-M. Poutissou and R. Poutissou

TRIUMF

Students and post-docs in red.

~70 physicists, plus a lot of hard work from earlier E787 collaborators.
The AGS extracts $\sim 65 \times 10^{12}$ protons at 22 GeV/c momentum over a 2.2 sec spill, every 5.4 sec.

They are shot on platinum target and particles produced $\sim 0^\circ$ are sent to the Low Energy Separated Beamline (LESB III), where K^+ are electrostatically separated from δ^+ and focused.

Finally in the E949 target, $\sim 3.5 \times 10^6 K^+/spill$ arrive and stop, with a ratio of $K/\delta \sim 2.5-3$
• Incoming 700MeV/c beam K⁺: identified by ckov, WC, scint. hodoscope (B4). Slowed down by BeO and AD

• K⁺ stops & decays at rest in scintillating fiber target – measure delay (2ns)

• Outgoing δ⁺: verified by IC, VC, T counter. Momentum measured in UTC, energy & range in RS and target (1T magnetic field parallel to beam)

• δ⁺ stops & decays in RS – detect δ⁺→κ⁺→e⁺ chain

• Photons vetoed hermetically in BV-BVL, RS, EC, CO, USPV, DSPV

The measurement w/ E949 detector

First E949 results
Ilektra A. Christidi
The measurement w/ E949 detector

- Incoming 700MeV/c beam K^+: identified by ckov, WC, scint. hodoscope (B4). Slowed down by BeO and AD
- K^+ stops & decays at rest in scintillating fiber target – measure delay (2ns)
- Outgoing δ^+: verified by IC, VC, T counter. Momentum measured in UTC, energy & range in RS and target (1T magnetic field parallel to beam)
- δ^+ stops & decays in RS – detect $\delta^+ \rightarrow \bar{\nu}^+ \rightarrow e^+$ chain
- Photons vetoed hermetically in BV-BVL, RS, EC, CO, USPV, DSPV
- New/upgraded elements

First E949 results
Ilektra A. Christidi
Previous (E787) results (1)

<table>
<thead>
<tr>
<th></th>
<th>PNN1</th>
<th>PNN2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0 (MeV/c)</td>
<td>[211,229]</td>
<td>[140,195]</td>
</tr>
<tr>
<td>Years</td>
<td>1995-98</td>
<td>1996-97</td>
</tr>
<tr>
<td>Stopped K^+</td>
<td>5.9×10^{12}</td>
<td>1.7×10^{12}</td>
</tr>
<tr>
<td>Candidates</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>0.15 ± 0.05</td>
<td>1.22 ± 0.24</td>
</tr>
<tr>
<td>$\text{BR}(K^+ \rightarrow \delta^{+}\bar{\nu})$</td>
<td>$(1.57^{+1.75}_{-0.82}) \times 10^{-10}$</td>
<td>$< 22 \times 10^{-10}$ (90% CL)</td>
</tr>
</tbody>
</table>

1995-97
1998
Monte Carlo
Previous (E787) results (2)

Candidate E787A

Candidate E787C

First E949 results
Ilektra A. Christidi
What’s new in E949?

- New/upgraded PV elements
- More protons from AGS
- Improved tracking and energy resolution
- Higher rate capability due to DAQ, electronics and trigger improvements
- Lower beam duty factor (spill time/ time between spills)
- Lower proton energy
- Problematic separators, worse K/δ ratio
Photon Veto improvement

~ 2 × better rejection at nominal PNN1 acceptance (80%) or
~ 5% more acceptance with E787 rejection!

* Good news for PNN2 as well…

E787, E949
Analysis strategy (1)

- **“Blind” analysis**: don’t examine signal region (“the box”) until all bg are verified
- A priori identification of bg sources
- To avoid bias, tune cuts using *randomly selected* 1/3 of the data, then measure bg with remaining 2/3
- Suppress each bg source w/ at least two independent cuts
- Bg cannot be reliably simulated ⇒ measure w/ data by inverting cuts and measuring rejection

<table>
<thead>
<tr>
<th>Source</th>
<th>Suppression method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+ \rightarrow \mu^+\nu(\gamma) \ (K_{\mu2})$</td>
<td>Kinematics</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+\pi^0 \ (K_{\pi2})$</td>
<td>√</td>
</tr>
<tr>
<td>Scattered π^+ beam</td>
<td>√</td>
</tr>
<tr>
<td>CEX</td>
<td></td>
</tr>
</tbody>
</table>

$\text{CEX} \equiv K^+n \rightarrow K^0p \ , \ K_L^0 \rightarrow \pi^+\ell^-\nu$
First E949 results
Ilektra A. Christidi

Example: $K^+ \rightarrow \delta^+ \delta^i$ bg rejection

Select events with photons, measure rejection of kinematic cuts (P, R, E “box”)

Select $K^+ \rightarrow \delta^+ \delta^i$ kinematically, measure rejection of photon veto
Analysis strategy (2)

• Verify bg estimates & check for correlations by *simultaneously* loosening both cuts and comparing observed and predicted number of events remaining.

• Construct **background functions** by varying *one cut at a time*, keeping the other inverted. Use them to estimate bg in the box.

• Use MC to measure geometrical acceptance, verify by measuring $BR(K^+ \rightarrow \bar{\delta}^+\delta^i)$
Expected bg

<table>
<thead>
<tr>
<th></th>
<th>PV×KIN</th>
<th>Observed</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{π_2}</td>
<td>10×10</td>
<td>3</td>
<td>1.1</td>
</tr>
<tr>
<td>K_{μ_2}</td>
<td>10×10</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>$K_{\mu m}$</td>
<td>10×10</td>
<td>1</td>
<td>0.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>TD×KIN</th>
<th>Observed</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{π_2}</td>
<td>10×10</td>
<td>4</td>
<td>1.4</td>
</tr>
<tr>
<td>K_{μ_2}</td>
<td>10×10</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>$K_{\mu m}$</td>
<td>10×10</td>
<td>1</td>
<td>1.3</td>
</tr>
</tbody>
</table>

K_{im} :: 3-body decays w/ muons ($K^+\rightarrow i^+i\bar{a}$, $\hat{E}^+\rightarrow \delta^+\delta i$) and $\hat{E}^+\rightarrow \delta^+\delta i$, $\delta^+\rightarrow i^+i$

TD :: $\delta \rightarrow i \rightarrow e$ identification

PV :: Photon Veto

KIN :: kinematic cuts

M×N :: reduction in rejection w.r.t. predefined 1×1 region by loosening the cuts - *same increase in bg expected*

Quantify consistency: Fit $N_{\text{obs}} = cN_{\text{pred}}$ and expect $c = 1$.

<table>
<thead>
<tr>
<th>Background</th>
<th>c</th>
<th>χ^2</th>
<th>Probability</th>
<th>Total background</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{π_2}</td>
<td>$0.85^{+0.12}_{-0.11}$</td>
<td>0.17</td>
<td>0.216 ± 0.023</td>
<td></td>
</tr>
<tr>
<td>K_{μ_2}</td>
<td>$1.15^{+0.25}_{-0.21}$</td>
<td>0.67</td>
<td>0.044 ± 0.005</td>
<td></td>
</tr>
<tr>
<td>$K_{\mu m}$</td>
<td>$1.06^{+0.35}_{-0.29}$</td>
<td>0.40</td>
<td>0.024 ± 0.010</td>
<td></td>
</tr>
</tbody>
</table>

Total bg in signal region: $0.30 ± 0.03$

First E949 results

Ilektra A. Christidi
E949 improved analysis strategy

- E787 bg estimation methods are reliable ⇒ confident to increase signal region by loosening cuts to gain acceptance, at cost of more total bg

- Divide signal region into cells, calculate expected bg (b_i) and signal (s_i) for each cell using the background functions

- Calculate BR using s_i/b_i of cells where event(s) are found, using likelihood ratio method:

$$
\text{Maximize } X = \prod_{i=1}^{n} X_i, \quad X_i = \frac{d_i!}{e^{-b_i} b_i^{d_i} d_i! \left(s_i + b_i\right)^{d_i}}
$$

where d_i the number of candidates in cell i

n the total number of cells
Likelihood ratio method

To calculate confidence levels:

• Poisson probability for sg+bg and for bg only:

\[P_{s+b} = \prod_{i=1}^{n} \frac{e^{-(s_i+b_i)} (s_i + b_i)^{d_i}}{d_i!} \]

\[P_b = \prod_{i=1}^{n} \frac{e^{-b_i} b_i^{d_i}}{d_i!} \]

• Sum over all configurations that give \(X \leq X_{\text{obs}} \) (less “signal-like”):

\[CL_{s+b} = P_{s+b}(X \leq X_{\text{obs}}) = \sum_{X({\{d_i\}}) \leq X({\{d_{i,obs}\}})} P_{s+b} \]

\[CL_b = P_b(X \leq X_{\text{obs}}) = \sum_{X({\{d_i\}}) \leq X({\{d_{i,obs}\}})} P_b \]

• Modified Frequentist confidence level: \(CL_s = \frac{CL_{s+b}}{CL_b} \)
Opening the box

One candidate found!

First E949 results
Ilektra A. Christidi
Evaluation of the candidate

How likely is it that the candidate is due to known background?

- If there are 100 identical experiments, then 7 of them will have a candidate from a known bg source, that is as signal-like or more than our candidate.
- The sum of expected bg events in all cells with $s_i/b_i \geq 1$ to the one the event was found, is 0.077. The probability that they could produce one or more events is 0.074 (~ 7/100) $\equiv 1-CL_b$

The E949 candidate is more likely to be due to bg ("dirtier") than the E787 candidates...

<table>
<thead>
<tr>
<th>Candidate</th>
<th>E787A</th>
<th>E787C</th>
<th>E949A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.006</td>
<td>0.02</td>
<td>0.07</td>
</tr>
</tbody>
</table>
First E949 results
Ilektra A. Christidi

Combined result

\[BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (1.47^{+1.30}_{-0.89}) \times 10^{-10} \]

(68% CL interval)

E787 result:

\[BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (157^{+1.75}_{-0.82}) \times 10^{-10} \]

<table>
<thead>
<tr>
<th></th>
<th>E787</th>
<th>E949</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stopped K(^+) ((N_K))</td>
<td>(5.9 \times 10^{12})</td>
<td>(1.8 \times 10^{12})</td>
</tr>
<tr>
<td>Total Acceptance</td>
<td>(0.0020 \pm 0.0002)</td>
<td>(0.0022 \pm 0.0002)</td>
</tr>
<tr>
<td>S.E.S.</td>
<td>(0.8 \times 10^{-10})</td>
<td>(2.6 \times 10^{-10})</td>
</tr>
<tr>
<td>Total Background</td>
<td>(0.14 \pm 0.05)</td>
<td>(0.30 \pm 0.03)</td>
</tr>
<tr>
<td>Candidate</td>
<td>E787A</td>
<td>E787C</td>
</tr>
<tr>
<td>(S_e/b_i)</td>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td>(W_i = \frac{S_e}{S_e + b_i})</td>
<td>0.98</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Some more details…

\[B(K^+ \rightarrow \pi^+\nu\bar{\nu}) > 0.42 \times 10^{-10} \text{ at } 90\% \text{ CL.} \]
\[B(K^+ \rightarrow \pi^+\nu\bar{\nu}) < 3.22 \times 10^{-10} \text{ at } 90\% \text{ CL.} \]

0.0055 < |V_{td}| < 0.0271

✓ The probability that known bg sources give a configuration of 3 events as signal-like as the 2 E787 + 1 E949 events or more, is 0.001

(compare to 0.077 for E949 alone)

? Central value, although smaller, is still \(\sim 2 \times \text{SM} \), but consistent within errors…

First E949 results
Ilektra A. Christidi
Effect on unitarity triangle

Thanks to Gino Isidori

Limits from measurements of:

$\text{BR}(K^+ - \bar{\delta}^+ \bar{\pi}^-) : \quad \text{central value}$

$\cdots \cdots \text{68\% interval}$

$\cdots \cdots \text{90\% interval}$

$\hat{\epsilon}_{\Gamma}$

$|V_{ub}|/|V_{cb}|$

$\sin 2\hat{\epsilon}$

$\hat{\epsilon}_d$, $\hat{\epsilon}_s$ / $\hat{\epsilon}_d$ \{ Depend on B_d mixing \}

Combined all but $K^+ - \bar{\delta}^+ \bar{\pi}^- (68\%, 90\%, 95\%)$
Narrowing of SM prediction assumes better measurement of B_s mixing consistent w/ SM

✔ Obviously, more statistics are needed! → more E949 running would be desirable

✔ Analysis on PNN2 data (phase space below the $K^+\rightarrow\bar{\phi}\phi^*$ peak) currently in progress
PNN2 analysis (1)

- More phase space than PNN1
- Probes different part of P_δ spectrum \rightarrow enhance validity of PNN1 result
- More background, scales the same as signal
Main bg mechanism: $K^+ \rightarrow \delta^+ \delta^i$ with δ^+ scatter in target \Rightarrow

- Simultaneous shift in range AND momentum
- Photons head near beam direction, the weakest PV region of the detector
PNN2 analysis (3)

- **Goal:** sensitivity equal to PNN1, $s/b = 1 \Rightarrow$

 $2 \times$ acceptance and $5 \times$ rejection

- Improved PV: new detectors at small angles

- Improved algorithms to identify δ^+ scatters in target

![Graph showing total rejection factor vs. total acceptance]
Conclusions

- E787 upgrade into E949 worked as expected
- One $K^+ \to \pi^+\nu\bar{\nu}$ candidate event observed, bringing the BR to $BR(K^+ \to \pi^+\nu\bar{\nu}) = (1.47^{+1.30}_{-0.89}) \times 10^{-10}$, which is still consistent with the SM
- Additional running needed for more influential results
- PNN2 analysis is under way
• Bg cannot be reliably simulated \Rightarrow measure w/ data by inverting cuts and measuring rejection

$$\begin{align*}
\text{signal region} & \quad \begin{array}{c|c|c}
\text{cut1} & B & D \\
\hline
A & C & \\
\text{cut2} & & \\
\end{array}
\quad \begin{align*}
\text{if cut1, cut2 uncorrelated,} \\
A/B &= C/D \\
A &= BC/D
\end{align*}

\text{invert cut1 B+D events} & \quad \begin{array}{c|c|c}
B & D \\
A & C & \\
\end{array}
\quad \begin{align*}
\text{apply cut2 B events} & \quad \begin{array}{c|c|c}
B & D \\
A & C & \\
\end{array}
\quad \begin{align*}
\text{invert cut2 C+D events} & \quad \begin{array}{c|c|c}
B & D \\
A & C & \\
\end{array}
\quad \begin{align*}
\text{apply cut1 R = (C+D)/C} & \quad \begin{array}{c|c|c}
B & D \\
A & C & \\
\end{array}
\quad bg &= B/(R-1) \\
&= BC/D
\end{align*}
\end{align*}
\end{align*}
Analysis strategy (3)

- Verify bg estimates & check for correlations by *simultaneously* loosening both cuts and comparing observed and predicted number of events remaining. Construct background functions by varying *one cut at a time*, keeping the other inverted.
The E949 detector

First E949 results
Ilektra A. Christidi
Delayed coincidence

\[K^+ \rightarrow \mu^+\nu \text{ events} \]

\[\pi^+ \text{ beam events} \]

First E949 results
Ilektra A. Christidi
\[\tilde{\delta}^+ \rightarrow \tilde{\iota}^+ \rightarrow e^+ \] identification

- \(E_i = 4.1 \text{ MeV}, R_\tilde{\iota} \sim 1 \text{ mm}, \hat{\delta}_\tilde{\delta} = 26 \text{ ns} \)
- \(E_e < 53 \text{ MeV}, \hat{\delta}_\iota = 2.2 \ \text{i} \text{s} \)
Toy MC for Junk code

BR dependence on s/b of cell where event is found:

![Graph showing BR dependence](image-url)
Pulse fitting in stopping counter

First E949 results
Ilektra A. Christidi
Another view of the event
Combined (E787 & E949) 84% upper and lower limits and central value of BR for single simulated events in the 2002 data set, with variations of the assumed Kp2 bg component of ±30%