IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 41, NO. 1, FEBRUARY 1994

131

E787 Data Acquisition Software Architecture

M. Burke, L. Felawka, R. Poutissou,
TRIUMF, 4004 Wesbrook Mall, Vancouver, BC,
V6T 2A2, Canada

and

S. Adler, J. Haggerty, R. Strzelinski, C. Witzig,
Physics, Brookhaven National Laboratory, Upton, NY,
11973, USA

Abstract

Brookhaven National Laboratory (BNL) Experiment
787’s second generation Unix-based data aquisition sys-
tem is comprised of several independent programs, each of
which controls a specific aspect of the experiment. These
programs include packages for reading events from the
hardware systems, analyzing and reducing the data, dis-
tributing the results to various data consumers, and log-
ging the data to tape or disk. Most of these can be run
in stand-alone mode, for ease of development and testing.
There are also a number of daemon processes for writing
special data records to the data streams, and several mon-
itor programs for evaluating and controlling the progress
of the whole. Coordination of these processes is achieved
through a combination of pipes, signals, shared memory,
and FIFOs, overseen by the user through a Motif graphi-
cal user interface. The system runs on a Silicon Graphics
4D/320, interfaced to a Fastbus system through the BNL
Fastbus/VME interface (BBFC), and runs under Irix and
Motif/X-windows. :

I. REQUIREMENTS

Brookhaven AGS (Alternating Gradient Synchrotron)
Experiment 787’s first generation data acquisition system
was MicroVax 3200/QBUS based, and relied on a farm
of 68020-based ACP nodes for online data processing and
compaction. The QBUS bandwidth of 1.5 Mb/s, and the
ultimate throughput of 233 kb/s to two tapes were ade-
quate for the first phase of the experiment, ending in 1991.
Upgrades starting at that time included a new beam line,
offering three times the beam intensity as before, and a de-
tector upgrade with new instrumentation, including 1000
channels of CCD transient digitizers. The event size is ex-
pected to triple once the second phase is complete. The
old data acquisition system could not handle this through-
put, so we undertook to design a new online system in the
spring of 1992. The goals were to maximize event through-
put within the constraints of the front-end electronics, the
periodic beam cycle of the AGS, and a tripled beam inten-
sity.

A. Hardware

We decided on Silicon Graphics’ (SGI) Power Series

4D/320 computer to serve as the computing engine of the

new data acquisition system. Advantages of this system in-
cluded multiple, high-performance, upgradeable CPUs, a

versatile and industry standard Unix-based operating sys-
tem, and a high-speed I/O subsystem including two SCSI
buses and a VME bus integrated into its internal architec-
ture. A clear upgrade path exists from this architecture to
SGI’s new Challenge architecture.

In our 1992 data-taking run, the computer configuration
included the Irix 4.0 operating system, two R3000 CPUs,
and four Exabyte 8mm tape drives (three model 8200s,
and one model 8500).

The front-end electronics were not changed to accomo-
date the new data acquisition system. In particular, SLAC
Scanner Processors (SSPs) [1] continue to be used to ac-
cumulate data from the FASTBUS crates during the one
second of beam in each 3.2 second spill. A trigger SSP
notifies the secondary SSPs when an event of interest has
occurred, and signals them to read out data from their
respective FASTBUS crates into memory. Between the
bursts of beam, a master SSP takes over the process of
building events and transferring them over the branch bus
to the SGI. A new high-speed fastbus to branch bus in-
terface (BBFC) [2] was designed, coupling the front end
electronics to the SGI’'s VME backplane. Data transfer
between FASTBUS and the SGI memory was measured at
approximately 17 Mb/s in each direction.

B. Software

Communication with the BBFC was facilitated with a
new device driver [3], which, along with the standard high-
level IEEE FASTBUS routines, and the BNLSSP routines
[4], were ported to the SGI. These packages eased the port-
ing of other code that interacts with hardware on this sys-
tem.

A philosophical decision was made to develop the online
system as a suite of independent processes, rather than
as a single, monolithic program. The advantages included
greater exploitation of the multi-CPU SGI architecture,
and greatly simplified development and testing, since each
component is devoted to a single task and can in principle
work as a stand-alone program. The main disadvantage,
namely the management and synchronization of numerous
processes in a multi-tasking environment, is largely han-
dled by the Unix operating system and its built-in facilities
for inter-process communication.

Our software wish list included an X11/Motif user in-
terface to the system, in order to enhance ease of operator
training, idiot-proofing, and overall trendiness. The XDe-

0018-9499/94$04.00 © 1994 IEEE

128

use one of the following buffer strategies: store forward or
virtual cut-through, both with or without additional buffer
space.

Ring A

Input link Output link

&

SCl interface

SCl interface

Output link Input link

Ring B

Fig. 5. Model for the ring-to-ring bridge

The basic element in both the node and the bridge is the
SCI interface shown in Fig. 6. Each SCI interface has an
address decoder, input FIFOs, output FIFOs, bypass FIFO
and a mux for the output link as defined in the standard [7].
The address decoder model can recognize an area of
addresses (for the bridge) or a single address for the node.
The SCI interface model operates at word level. It handles
all logical operators for SCI, including busy retries and the
«“A-B” aging scheme, but the elasticity buffer and clock
synchronization as in a real implementation is skipped.

Out from application In to application

requests responses requests responses
]
N =
Input FIFOs

Bypass FIFO
Output Link /

Fig. 6. Model for the SCI interface

The algorithm to route packets through the network uses
fixed fields in the header for each dimension in the net-
work. A packet will then go in one dimension until a bridge
recognize the field. It will continue through the vertex and
in the new dimension until a new bridge recognize the
address field and so on until the right vertex and destination
node is found.

‘ Output FIFOJ

J/
input Link

B. Simulation Parameters

Table 1 gives an overview of the different parameters
that were used in the simulations. The table consists of both
parameters that were kept constant through all simulations
and parameters that were modified, and it shows between
which boundaries that the parameters were used. Physical

characteristics of nodes, bridges and wires were kept con-
stant for the different topologies that were simulated. These
parameters are based on information from Dolphin SCI
Technology and are related to a possible hardware imple-
mentation. For simulation of a selected topology a set of 21
simulations was performed with 7 different load situations
and with 1, 2 and 4 outstanding requests. Combinations of
the parameters k, n and p defined the number of nodes in a
topology between 12 and 512 nodes.

For all load situations a uniform distribution of the time
from a response to a new request was used within the indi-
cated intervals. Negative exponential and normal distribu-
tion were also tried, but there were no significant difference
in the results. The load situation when a new request arrives
as fast as possible will be equivalent to a worst case startup
situation, and the light load situation is close to what one
can expect from 50-100 MIPS CPU with caches in a shared
memory environment. The load situations used in these
simulations can be classified to be heavier than in real
DAQ experiments. All requests were assumed to be
move64 packets.

For all simulations presented in this paper, we have
assumed the bridge be of the type “virtual-cut-through”
with double FIFOs for requests and response. This type of a
bridge gave the best performance.

IV. RESULTS

In this presentation of the simulations we have focused on
results that indicate what kind of performance one can
expect from SCI and also what limitations that may appear.
We have concentrated on effective system bandwidth and
latency, and tried to show how systems scale. We have also
compared the simulation results with calculations based on
simple theoretical models.

8000.

£ []
7000-E " °.® . o3
6000 ® &
2 5000 @ E
2 = Y 3
2 4000f-g]
= F B
3000 & 3
2000-Fg 3
1000—F 3
d sdo 10bo 1500 2000 2500 3000

Latency (ns)

Fig. 7. Effegtive bandwidth as a function of latency for the
topology 6°*3 (6.2.3) with 108 nodes. (Longest latency
has 4 outstanding requests).

An important system behavior is shown in Fig. 7. which
displays the effective bandwidth in the system as function
of latency. The figure is for a system with 108 active nodes
built from a mesh of 6 x 6 vertices and 3 nodes in each ver-
tex. The lightest load gives the lowest latency. When the
load increases, both latency and bandwidth increase, but the
bandwidth reaches a maximum and then slowly decreases if
the load is further increased. The reason for this reduced
bandwidth is an increasing number of retries, due to heavy
load.

Latency is measured from when a packet is placed in the
output FIFO and ready to access the network in the sending

kbytes/event
Event lintt ¢
Volume limit ¢
Spill timeout ¢

-

133

and click on <K,

di: genaric: SIGINT re| [

Select an appropriate file from the
selection box {or accept

If there is an ervor in the sstup

you t externa
problem it indicated, and try again,

the default)

dr0: generict SIGINT r|

dri: generict SIGINT r|

dr2: generict SIGINT r
dr3: generfc: SIGINT r|
ddctl: generic: SIGINT;
di: generic: SIGINT re;
DUI: could not wake up)
dis generice SIGINT re
dit generic: SIGINT re

=]
fscload |
]
[rddac]
{pedestal

Cox] (o] (o] |}

Fig. 2. The DUI (user interface).

B.4. Special Record Daemons

The special record daemons are a special type of data
producer that are invoked at certain times to write special
records to the data stream. Four types of special records
are currently supported: comments, which are written at
the beginning of every run and any other time at the user’s
discretion; scalers, which are written once per spill; begin-
runs, which are written at the start of every run; and en-
druns, which are written at the end of every run. These
records are generated and broadcast to all data consumers
by daemon-like processes that sleep until signalled by the
DUI (see below).

B.5. DUI (user interface)

The user interface (figure 2) is an X11/Motif program
that allows the operator to automatically start up and
initialize all the various processes of the system, quickly
and easily navigate the states of the online system, ini-
tialize hardware, and monitor the progress of the runs. It
polls the DCOM area to track the states of the various
online processes and reports relevant information to the
user through a status window. It also monitors pipes that
are attached to each of the processes in order to pick up
messages and display them for the operator.

At any time the DUI is in one of seven states: ini-
tialization, start-up, beginrun, active, paused, endrun, or
shutdown (figure 3). The appearance of the user interface
changes in each state to show the operator only those op-
tions and state transitions that are available at that time.

Initialize

v
-

I
Shutdown |

—_—

Startup I
I

v

Begin Run

Active

v

Paused

End Run

Fig. 3. State diagram for the online system.

Development and testing of the DUI was greatly sim-
plified by the XDesigner user interface builder tool. It
proved so effective for generating graphical user interfaces
that snappy little GUIs were written for most of our mon-
itor and testing programs. Several, including applications
to monitor the DD system status and an interface to the
DPO0s, have become integral components of the online sys-
tem.

130

throughput from the node has reached its limit, while
latency increases 6-7 times and the percent of packets end-
ing up getting a busy-retry increase to 80%.

® effective data rate (Mbytes/s)
0 % busy of raw data rate

1501 | i |
2 « 0% E
R E s ®
100¢ ®]
» £ (]]
2 F ® gD 3
2 50F [4 .08
= t e ;
£ = 7
0_: ﬂﬂl u

0 200 300 400 500

Mbytes/s
m latency

3000} |
: "
— g " 3
2 2000.¢ n E
2 3 . E
g : . E
£ 1000 E
3 E)]
WL E
[1Hl = | E

C 100 2 400 500

h%bytes?s
Fig 12. Effective data transfer from a node as a function of
raw data rate (included busy-retry). Increase in latency and
percentage of busy packets are also shown as function of
raw data rate. The topology is a 6-ary 2-cube with 3 nodes
in each vertex, i.e. 108 nodes.

V. CONCLUSIONS

The simulations show that complex systems ranging from a
few tens and up to about 500 active nodes can use k-ary n-
cubes and get a good effective system bandwidth and a rel-
ative low latency when the system is not too heavily
loaded. The results show that:

- Prediction of latency is good when the systems are
not saturated.

- Latency increases and is unpredictable in a saturated
system, but no deadlock occurs. Forward progress is
guaranteed.

- The ring-to-ring bridge gives good system band-
width and is efficient for mesh networks (2 dimen-
sions).

- The ring-to-ring bridge is not optimal for larger
dimensions, due to low utilization of theoretical
available bandwidth.

- Routing algorithms using ring-to-ring bridge is sim-
ple and can easily be implemented in hardware.
Theoretical calculations and simulations show close to the
same results when the systems are lightly loaded. When the
system starts to saturate, the theoretical calculations of
latency and bandwidth are much more difficult to do, and
simulation will be an easier method to get estimation of

system performance.
As a general statement, SCI is be a good candidate for
DAQ system when the system bandwidth requirements are

in the multi GBytes/s range and when fast access to data in
any part of the system is an essential parameter.

VI. ACKNOWLEDGEMENT

This work is supported by Dolphin SCI Technology and
Royal Norwegian Council for Scientific and Industrial
research (NTNF). We wish to acknowledge the contribu-
tions of Andre Bogaerts, Stein Gjessing, David B. Gustav-
son and Bin Wu.

VII. REFERENCES

Gustavson, D.B., The Scalable Coherent Interface and
Related Standards Projects, IEEE Micro, 12(1), Febru-
ary 1992, pp.10-22.

[2] Alnes, K., SCI Node Chip, Proceedings Open Bus

Systems 92, Ziirich, October 1992, pp.49-54.

Bothner, J. W. and Hulaas, T.I., Various interconnects

for SCI-based systems, Proceedings Open Bus Sys-

tems 91, Paris, November 1991, pp.197-202.

Bothner, . W. and Hulaas, T.I., Topologies for SCI-

based systems with up to a few hundred nodes, In-

stititutt for Informatikk, University of Oslo, February

1993.

Kristiansen, E.H., Bothner, J. W. and Hulaas, T.L, Be-

haviour of Scalable Coherent Interface in larger Sys-

tems, Proceedings CAMAC-92, Warsaw, October

1992

Bogaerts, A., Cern, Personal communication and dis-

cussions, March 1993.

IEEE, SCI - Scalable Coherent Interface, D2.00,

Draft accepted as IEEE std. 1596-1992, March 18,

1992.

Dally, W.L. and Seitz, C.L., Deadlock-Free Message

Routing in Multiprocessor Interconnection Networks,

IEEE Transactions on Computers, C-36(5), May 1987,

pp.547-553.

Johnson, R.E., Interconnect Topologies with Point-

to-Point Rings, Computer Sciences Technical Report

#1058, University of Wisconsin-Madison, December

1991.

[10] Johnson, R.E. and Goodman, J.R., Synthesizing Gen-
eral Toplogies from Rings, Proceedings of ICPP, Au-
gust 1992.

[11] Scott, S.L. and Goodman, J.R., Performance of Pipe-
lined K-ary N-cube Networks, Technical Report
#1010 University of Wisconsin-Madison, February
1991.

[12] Scott, S.L., Goodman, J.R. and Vernon, M.K., Perfor-

mance of the SCI Ring, Proceedings IEEE ISCA 92,

Queensland, May 1992.

(1]

(31

(4]

(51

[6]
(71

(8]

91

